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This paper proposes new methods for modeling unstructured uncertainties and robust controlling of
unknown nonlinear dynamic systems by using a novel robust Takagi Sugeno fuzzy controller (RTSFC).
First, a new training algorithm for an interval type-2 fuzzy basis function network (FBFN) is proposed.
Next, a novel technique is presented to convert the interval type-2 FBFN to an interval type-2 Takagi
Sugeno (TS) fuzzy model. Based on the interval type-2 TS and type-2 FBFN models, a robust controller is
presented with an adjustable convergence rate. Since the type-2 fuzzy model with its new training
technique can effectively capture the unstructured uncertainties and accurately estimate the upper and
lower bounds of unknown nonlinear dynamic systems, the stability condition of the proposed control
system is much less conservative than other robust control methods that are based on norm bounded
uncertainties. Simulation results on an electrohydraulic actuator show that the RTSFC can reduce steady
state error under different conditions while maintaining better responses than the other robust sliding
mode controllers.

& 2016 Elsevier Ltd. All rights reserved.
1. Introduction

For unknown dynamic systems, many robust adaptive control
techniques have been proposed based on the parameters of a uni-
versal approximator (Lee and Tomizuka, 2000; Lee, 2011). Goyal
et al. (2015) introduced a robust sliding mode control based on
Chebyshev neural networks. Chadli and Guerra (2012) proposed a
robust static output feedback for a discrete Takagi–Sugeno (TS)
fuzzy system. The stability conditions in their studies are re-
presented in terms of a set of linear matrix inequalities (LMI) con-
ditions. An observer-based output feedback nonlinear robust control
of nonlinear systems with parametric uncertainties were introduced
by Yao et al. (2014a) to provide a sufficient condition for robust
stabilization of the systems when all state variables are not available
for measurement. By using a Lyapunov–Krasovskii function (LKF),
Hu et al. (2012) introduced a stability condition to stabilize discrete
stochastic systems with mixed time delays, randomly occurring
uncertainties, and randomly occurring nonlinearities. However,
since these methods represented uncertainties as functions of sys-
tem parameters, they are not applicable for cases where the causes
of uncertainties are not known (unstructured uncertainties).
hin@purdue.edu (Y.C. Shin).
In general, most of the papers in the literature only investigate
the stability of fuzzy control systems with structured uncertainties
(Lee et al., 2001; Lin et al., 2013; Sato, 2009; Sloth et al., 2009).
Unstructured uncertainties, however, represent a much more
general class of nonlinear systems and can incorporate model in-
accuracies and measurement noise. One method to represent un-
structured uncertainties is to model a nonlinear system by a linear
system with norm bounded uncertain matrices. Wang et al. (2014)
proposed a set of LMIs that need to be solved at each time step to
obtain a control solution that satisfies some performance criteria.
However, since finding the LMI solution requires special comput-
ing tools, real time computation is a challenge in this case espe-
cially when the sampling time is relatively small. Furthermore, the
solution of the LMIs might not be found because representing a
highly nonlinear system by a set of linear systems will lead to large
values of uncertainty norms due to linearization error. Another
approach that deals with nonlinear systems with unstructured
uncertainties is a combination of backstepping and small gain
theorem (Li et al., 2014; Liu et al., 2014; Tong et al., 2009). Hsu
et al. (2015) proposed the intelligent nonsingular terminal sliding-
mode controller and used the Lyapunov theory to prove the sta-
bility of the control system. By using the Lyapunov method, Sal-
gado et al. (2014) introduced the proportional derivative fuzzy
control supplied with second order sliding mode differentiation.
Baghbani et al. (2016) proposed a robust adaptive fuzzy controller

www.sciencedirect.com/science/journal/09521976
www.elsevier.com/locate/engappai
http://dx.doi.org/10.1016/j.engappai.2016.03.010
http://dx.doi.org/10.1016/j.engappai.2016.03.010
http://dx.doi.org/10.1016/j.engappai.2016.03.010
http://crossmark.crossref.org/dialog/?doi=10.1016/j.engappai.2016.03.010&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1016/j.engappai.2016.03.010&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1016/j.engappai.2016.03.010&domain=pdf
mailto:pdngo@purdue.edu
mailto:shin@purdue.edu
http://dx.doi.org/10.1016/j.engappai.2016.03.010


P.D. Ngo, Y.C. Shin / Engineering Applications of Artificial Intelligence 53 (2016) 74–85 75
by minimizing the H2 energy and tracking cost function. However,
the above methods can only be applied to a certain class of non-
linear dynamic systems where the input is represented by a linear
term in the system's mathematical model. Gao et al. (2012) pre-
sents an approach to control general nonlinear systems based on
Takagi–Sugeno (T–S) fuzzy dynamic models. The method uses LMI
approach to design the TS fuzzy controller to stabilize systems
with norm bounded unstructured uncertainties. However, ob-
taining the bounded norms of uncertain nonlinear systems was
not addressed in the paper and the LMI conditions for norm
bounded uncertainties are generally conservative.

To capture the uncertainties in systems, type-2 fuzzy systems
(Karnik et al., 1999) have been introduced, in which the type-2
fuzzy set is utilized. However, due to the complexity of the rule
uncertainties and computational requirements to calculate the
output, modeling nonlinear systems by using type-2 fuzzy sys-
tems is a very computationally intensive process. This leads to
the concept of an interval type-2 fuzzy-logic system, in which the
secondary membership functions of either the antecedents or
the consequents are simplified to an interval set. Similar to type-
1 fuzzy systems, the combination of type-2 fuzzy systems and
neural networks brings different intelligent modeling and opti-
mization techniques to obtain rule bases and membership
functions without the need of an expert knowledge. Méndez and
de los Angeles Hernandez (2009) presented a technique to obtain
an interval type-2 fuzzy neural network by the orthogonal least
square and back propagation methods. Rubio-Solis and Pa-
noutsos (2015) proposed a modeling framework for an interval
type-2 radial basis function neural network via a granular com-
puting and adaptive back propagation approaches. However, the
uncertainties represented in type-2 fuzzy neural systems are
normally not in the form that can be easily used to design a ro-
bust controller. Furthermore, there is a lack of a theoretical sta-
bility analysis for type-2 fuzzy neural network based control
systems.

Hydraulic positioning systems are important in different in-
dustries such as transportation, agriculture and aerospace. The
effects of nonlinear frictions are considered as the most important
obstacle for improving the precision of hydraulic actuators. Non-
linear friction exists in all hydraulic systems (Wang et al., 2008).
The friction uncertainty includes stribeck effect, hysteresis, spring-
like characteristics, stiction and varying break-away force (Lin
et al., 2013). It has also been known that nonlinear friction is very
difficult to model, and hence it is considered as the sources of
uncertainties for which many controllers have been implemented
to demonstrate their robustness in recent years (Lin et al., 2013;
Mandal et al., 2015; Wang et al., 2008; Yao et al., 2014b).

This paper proposes a new method to train an interval type-2
fuzzy basis function network (FBFN) (cf. Section 2). The training
algorithm not only further improves the performances of the
fuzzy neural network system but also provides a framework to
design a robust TS fuzzy controller. FBFNs have been used as
models for many nonlinear systems in the literature (Jin and
Shin, 2015; Lin, 2007; Ngo and Shin, 2015) since an FBFN was
proven to be a universal approximator (Wang and Mendel, 1992).
The antecedent of the interval type-2 FBFN in this study is ob-
tained by using the adaptive least square with genetic algorithm
(Lee and Shin, 2003) while the interval values of the consequent
are obtained by the active set method. A new technique is also
proposed to convert an interval type-2 FBFN to an interval type-2
TS fuzzy model (cf. Section 3). Based on the interval type-2 TS
model and the interval type-2 FBFN, a robust controller that is
not only robust but also produces good transient performances
when implemented on nonlinear systems with unstructured
uncertainties is presented (cf. Section 4).
2. Training interval type-2 FBFN models by using genetic al-
gorithm and active set method

This section provides a new training method to obtain the type-
2 FBFN that can capture unstructured uncertainties within an
unknown nonlinear system. Consider a class of nonlinear dyna-
mical system with m inputs and n state variables (m and n are
positive integers), which can be represented by the following state
space equation:

( + ) = ( ( ) ( )) ( ) = ( )k k kx f x u x x1 , , 0 10

where ( ) = [ ( ) … ( )]k x k x kx , , n1
T is the vector of measurable state

variables, ( ) = [ ( ) … ( )]k u k u ku , , m1
T is the input vector, k is the time

instance, f is the vector of functions that are locally Lipschitz
nonlinear and real continuous in a compact set. The locally Lip-
schitz property of f ensures that the solution of the state space
equations is existent and unique (Khalil, 2002).

It has been proven by Wang and Mendel (1992) that a linear
combination of fuzzy basis functions are capable of uniformly
approximating any real continuous function on a compact set to
arbitrary accuracy. In this paper, to approximate future states of a
nonlinear system, an interval type-2 FBFN model can be con-
structed from the input and measurable state variable data
through a set of J fuzzy rules, in which rule Rj to calculate the
future value of the state variable xp has the following form:

( ) … ( ) ( )

… ( )

˜ ( + ) = ˜ ( + ) = ˜ = … ( )

R x k X x k X u k

U u k U

y k x k Y j J

Rule : IF is AND is AND

is AND is

THEN 1 1 , 1, , 2

j j
n n

j

j
m m

j

p
j

1 1 1

1

where ( )… ( )u k u km1 are the inputs at time instance k. ( )… ( )x k x kn1

are the measured state variables. ˜ ( + )y k 1 is the interval output of

the FBFN. …X Xj
n
j

1 and …U Uj
m
j

1 are type-1 fuzzy sets of rule Rj

characterized by Gaussian membership functions μ ( )x
X i

p
j and

μ ( ) ( = … = … )u p n q m1, , ; 1, ,
U j

q
j with the centers cXp

j , cUq
j and

standard deviations σXp
j , σUq

j :

( )μ μ
σ

= ( ) ( ) = −
−

( )

⎡

⎣
⎢
⎢

⎛
⎝
⎜⎜

⎞
⎠
⎟⎟

⎤

⎦
⎥
⎥X x x x

x c
, , exp

1
2

3
p
j

p X p X p
p Xp

j

Xp
j

2

p
j

p
j

( )μ μ
σ

= ( ) ( ) = −
−

( )

⎡

⎣
⎢
⎢

⎛
⎝
⎜⎜

⎞
⎠
⎟⎟

⎤

⎦
⎥
⎥U u u u

u c
, , exp

1
2

4
q
j

q U q U q
q Uq

j

Uq
j

2

q
j

q
j

Ỹ
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is a type-2 interval fuzzy set. Ỹ

j
is determined by wl

j and wr
j,

which are the two end points of its centroid interval set:

μ μ˜ = ( ( )) ( ) = ∈ [ ]˜ ˜Y x x x w w, , 1 when x
j

Y Y l
j

r
j

j j .
By assuming that the singleton fuzzier, product inference and

centroid defuzzifier are used in the inferencing process, for a crisp
input vector

= ( … ) = ( … … ) ( )+z z x x u uz , , , , , , , 5m n n m1 1 1
T

the output of the type-2 FBFN described in (2) is an interval
number and can be calculated by (Lee and Shin, 2003; Liang and
Mendel, 2000):
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is the pseudo fuzzy basis function of

rule Rj, zi is the ith element of the crisp input vector z, J is the
number of fuzzy rules.

Assuming that N input-output training pairs
{ ( ) ( )} ( = … )i y i i Nz , with 1, ,t t are available, the task of training a
type-2 FBFN is to determine the pseudo fuzzy basis functions ( )p zj

with = …j J1, , and the output interval fuzzy set characterized by
wl

j and wr
j in order to minimize the errors ( )e il , ( )e ir , δ ( )y il and δ ( )y ir

defined by the following equations:
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where ( )e il and ( )e ir are the training errors, and δ ( )y il and δ ( )y ir are
the errors due to system uncertainties. ( )e il , ( )e ir , δ ( )y il and δ ( )y ir
must be kept positive during the training process to obtain the
lower and upper bound of the output interval fuzzy set.

The above equations can be rearranged into matrix forms as
follows:

ε ε= + = − ( )y Pw Pw 8t l l r r

where = [ ( ) … ( )]y y Ny 1 , ,t t t
T, = [ … ]w ww , ,l l lJ1

T, = [ … ]w ww , ,r r rJ1
T,

δ δε = [ ( ) + ( ) … ( ) + ( )]e y e N y1 1 , , 1l l l l l
T, δ δε = [ ( ) + ( ) … ( ) + ( )]e y e N yN N , , Nr r r r r

T

and

( ) ( )

( ) ( )
=

( ) … ( )
⋮ ⋱ ⋮

( ) … ( ) ( )

⎡

⎣

⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥

p p

p N p N

P

z z

z z

1 1

9

t J t

t J t

1

1

The pseudo fuzzy basis functions ( )p zj with = …j J1, , can be
found in a similar way as in the type-1 FBFN (Lee and Shin, 2003). By
using the genetic algorithm, the method starts with a preset pseudo
fuzzy basis function and sequentially selects basis functions that will
decrease the error the most. In other words, each added pseudo fuzzy
basis function will maximize the following error reduction measure:

[ ] = || || ( )+err PP y 10t
2

where +P is the pseudo inverse of the pseudo fuzzy basis function
matrix P. The pseudo-fuzzy basis function ( )p zj is characterized by a

nonlinear parameter set λ σ= { }c ,j j j , where = ( … )+c cc , ,j
j

m n
j

1 and

σ σσ = ( … )+, ,j
j

m n
j

1 are the vectors of the means and standard devia-
tions of input membership functions. In order to obtain the optimal
values of these parameters, the parameters are encoded into binary
string and the evolution of the population is conducted through
reproduction, cross over and mutation. The fitness of each individual
in the population is chosen to be a linear function of the error:

λ( ) = [ ] + ( )g a err b 11

where a and b are scalar parameters. The use of genetic algorithm for
fuzzy basis function network has been proven to be effective for
obtaining the pseudo fuzzy basis functions (Lee and Shin, 2001). The
training can be done offline based on the input and output data of
the nonlinear system. The parameters of the model will be used to
design the controller. Hence real time computation with generic al-
gorithms is not required during the implementation of the controller.

Once the response vector matrix P is determined, finding wl

and wr becomes two constrained linear least-squares problems:
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In this work, only the first case is considered since the second case
can be transformed to the first case by replacing the condition
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Since y yt t
T is constant, the first constrained linear least square

problem given in Eq. (12) becomes a constrained quadratic pro-
graming problem:
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The solution of (14) can be solved by using the active-set
method. The active set method is described in (Gill et al., 1991,
1984; MathWorks, 2015) and is available as a commercial package
by using the MATLAB optimization toolbox. The steps to obtain wl

by using the active set method are described as follows:
Step 1: Construct the active constraint matrix Sk whose rows

are taken from the constraints given in matrix P that are active at
the solution point (equality constraint is satisfied). k is the itera-
tion number.

Step 2: Assume that Q k and Rk are the QR decomposition
matrices of Sk ( Q k is an orthogonal matrix and Rk is an upper
triangular matrix). From the last N – l columns of Q k, where N is
the number of training data and l is the number of active con-
straints, form matrix Zk:

= [ + ] = ( )l NZ Q Q S R: , 1: where 15k k k k k
T T

Step 3: Calculate the search direction dk as a linear combination
of the columns of Zk: =d Z rk k for some vector r.

Step 4: Update the value of vector wl by the search direction dk:

α= + ( ){ + } { }w w d 16l k l k k1

where α =
={ }

−( − ( )){ }min
i N

y ip w

p d1,...,

i l k t

i k
and pi is the ith row vector of

matrix P.
Step 5: Calculate the Lagrange multiplier vector λk, which satisfies:

λ = ( )S c 17k k
T

Step 6: If all the elements of λk are positive, { + }wl k 1 is the op-
timal solution. Otherwise, go to step 1.
3. Obtaining the interval type-2 T–S fuzzy model from the in-
terval type-2 A1-C2 FBFN model

Since type-2 TS fuzzy models have been used extensively to
design robust controllers, this section introduces a method to
convert an interval type-2 FBFN to an interval type-2 A1-C2 TS
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fuzzy model. In the interval type-2 A1-C2 TS fuzzy model, the
antecedents are type-1 fuzzy set (A1) while the consequents are
type 2 interval numbers (C2). This method will expand the ap-
plications of the type-2 FBFN in many areas since existing robust
controllers can be easily implemented on nonlinear systems with
unstructured uncertainties. Consider a nonlinear system with p
state variables where each state variable can be approximated by
an interval type-2 FBFN model as described in the previous sec-
tion. The structure of rule Rp

j of the type-2 FBFN that calculates the
state variable ( = … )x p n, 1p has the following form:
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the local linear models of the nonlinear system represented by Eq.
(18) can be used to construct fuzzy rules in the interval type-2 TS
fuzzy model. By choosing enough operating points, the interval
type-2 TS fuzzy model will become a good approximation of the
nonlinear dynamic system. At each operating point, the interval
type-2 TS fuzzy rule can be obtained as follows:
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where …X X, , n1 and …U Um1 are type-1 fuzzy sets with triangular
membership functions that describe the operating condition. Each
element in the coefficient matrices χ υ˜ ( )A ,i i i and χ υ˜ ( )B ,i i i in Eq.
(21) is an interval number. χ υ˜ ( )A ,i i i and χ υ˜ ( )B ,i i i are computed as
follows:
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χ υ

χ υ
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The partial derivative of the nonlinear mapping fp with respect
to the state variable xq can be calculated by the following
formula:

∂˜ ( )
∂

= ( )⋅ ˜
( )

f

x

x u
a x u w

,
,

23
p

q
p q p,
T

where ˜ = [ ˜ ˜ … ˜ ]( ) ( ) ( )w w ww , ,p p p p
J1 2 T and = [ … ]( ) ( ) ( )a a aap q p q p q p q

J
, ,

1
,
2

,
T. The

jth element of vector ap q, can be calculated as:
Within the rule j of the FBFN model (for the output xp), c
Xp q

j
,
and

σ
Xp q

j
,

are, respectively, the mean and standard deviation of the
Gaussian membership function of xq.

Similarly, the partial derivative of the nonlinear mapping fp

with respect to the state variable uq can be computed by

∂˜ ( )
∂

= ( )⋅ ˜
( )

f

u

x u
b x u w

,
,

25
p

q
p q p,
T
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where ˜ = [ ˜ ˜ … ˜ ]( ) ( ) ( )w w ww , ,p p p p
M1 2 T and = [ … ]( ) ( ) ( )b b bbp q p q p q p q

M
, ,

1
,
2

,
T. The

jth element of vector bp q, can be calculated as:
μ μ

μ μ

μ μ μ μ

μ μ
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Assume that Ai min, Ai max, Bi min and Bi max are matrices that
contain the lower and upper values of each element of matrices Ãi

and B̃i, respectively. Finding Ai min, Ai max, Bi min and Bi max becomes
the problem of obtaining the maximum and minimum values of

( ) ⋅ ˜
χ υ= =

a x u w,p q px u,
T

,i i
and ( ) ⋅ ˜

χ υ= =
b x u w,p q px u,

T
,i i

, respectively. Since

the elements of matrices ap q, and bp q, are crisp numbers while the
elements of vector w̃p are interval numbers, the solution can be
obtained easily by using existing linear programing methods such
as the simplex method (Dantzig et al., 1955) or interior-point
methods (Mehrotra, 1992; Zhang, 1998).

In addition to Ai min, Ai max, Bi min and Bi max, finding the coef-
ficient matrices of the type-2 TS fuzzy model, which produce the
upper and lower bounds of the output is important for the con-
troller design purpose. With ( ( ) ( ))f k kx u,pl and ( ( ) ( ))f k kx u,pr de-
fined in Eq. (19), the matrices Ail, Bil are introduced as the line-
arized coefficient matrices of ( ( ) ( ))f k kx u,pl through the linear-
ization process as given in Eq. (22). Similarly, Air , Bir are in-
troduced as the linearized coefficient matrices of ( ( ) ( ))f k kx u,pr .
Then, when χ( ) ≈kx i, υ( ) ≈ku i the following approximations can
be obtained:

χ χ υ χ χ υ υ+ ( ) ( ) − + ( ) ( ) −

≈ ( ( ) ( )) ( )

⎡⎣ ⎤⎦ ⎡⎣ ⎤⎦k k

f k k

A x B u

x u

, ,

, 27

i il i i i il i i i

pl

and

χ χ υ χ υ υ+ ( ) ( ) − + ( ) ( ) −

≈ ( ( ) ( )) ( )

⎡⎣ ⎤⎦ ⎡⎣ ⎤⎦k k

f k k

A x x B u

x u

, ,

, 28

i ir i i ir i i i

pr

0

In other words, Ail and Bil are the coefficient matrices of the
local linear model, which approximate the lower bounds of the
nonlinear system output, Air and Bir are the coefficient matrices
that are used to approximate the upper bound of the output. It is
noted that the values of Ail, Bil, Air and Bir are different from the
values of Ai min, Ai max, Bi min and Bi max.

With wpl and wpr as the lower and upper bounds of w̃p, re-
spectively, the element { }Ail p q, (on the pth row and qth column) of
matrix Ail can be calculated by using Eq. (23) as follows:

= ( ) ⋅ ( )χ υ{ } = =
A a x u w, 29il p q p q plx u, ,

T
,i i

Similarly:

= ( ) ⋅ ( )χ υ{ } = =
A a x u w, 30ir p q p q prx u, ,

T
,i i

= ( ) ⋅ ( )χ υ{ } = =
B b x u w, 31il p q p q plx u, ,

T
,i i
= ( ) ⋅ ( )χ υ{ } = =
B b x u w, 32ir p q p q prx u, ,

T
,i i
By defining the following matrices:

= + = + Δ ˜ = ˜ −

Δ ˜ = ˜ − ( )

A
A A

B
B B

A A A

B B B
2

,
2

, ,

33

i
i i

i
i i

i i i

i i i

max min min max

in order to derive the upper bound of the Lyapunov equation
proposed in the next section, the matrices ΔAim and ΔBim are in-
troduced such that

( ) ( )Δ + Δ Δ + Δ

= (Δ + Δ ) (Δ + Δ )
( )Δ ∈Δ ˜ Δ ∈Δ ˜

⎡⎣ ⎤⎦
A x B u A x B u

Ax Bu Ax Bumax
34

im im
T

im im

T

A A B B,i i

Further introductions of δaim
p , δail

p, δair
p , δãi

p, δbim
p , δbil

p, δbir
p , δb̃i

p
,

ail
p. air

p , bil
p, bir

p , ai
p, bi

p as the pth row of matrices ΔAim, ΔAil, ΔAir , ΔÃi,
ΔBim, ΔBil, ΔBir , ΔB̃i, Ail, Air , Bil, Bir , Ai and Bi, respectively, and χ { }i p

as the pth row of the operating condition vector χi are needed to
construct the matrices ΔAim and ΔBim.

If the operating condition χ { }i p is positive, from the definitions
of Air and Bir , the following can be obtained when ( )x kp is near
χ { }i p :

( ) ( )δ δ δ δ

δ δ δ δ

+ +

= ( + ) ( + )
( )δ δ δ δ∈ ˜ ∈ ˜

⎡⎣ ⎤⎦
a x b u a x b u

ax bu ax bumax
35
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,

T

i
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i
p

Similarly, if the operating condition χ { }i p is negative, the fol-
lowing can be obtained when ( )x kp is near χ { }i p :

( ) ( )δ δ δ δ

δ δ δ δ

+ +

= ( + ) ( + )
( )δ δ δ δ∈ ˜ ∈ ˜
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a x b u a x b u

ax bu ax bumax
36
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Hence, the rows of ΔAim and ΔBim can be computed by:

χ δ δ

χ δ δ

< = − = −

≥ = − = − ( )

{ }
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a a a b b b

a a a b b b

if 0: ,
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4. Robust TS fuzzy controller with integral term

In this section, by using the parameters of the interval type-2
TS and type-2 FBFN models, a robust controller that is based on a
relaxed stability condition is presented. Consider a nonlinear sys-
tem where the state variable vector can be approximated by a
type-2 TS fuzzy model with M rules. The structure of rule Ri of the
model is described as follows:



Fig. 1. Schematic diagram of the closed loop control system.
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where ˜ ( + )kx 1 is the predicted interval value of the state variable
vector x. …X X, ,i

n
i

1 and …U U, ,i
n
i

1 are type-1 fuzzy sets with tri-
angular membership functions. Each element in the coefficient
matrices Ãi and B̃i is an interval number. By using the TS fuzzy
inference mechanism, the predicted interval output of the fuzzy
model can be derived as follows:
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∑

∑

μ
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˜ ( + ) = ¯ ( ( ) ( ))⋅ ˜ ( ) + ˜ ( )
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where Ai, Bi, ΔÃi, ΔB̃i are defined in Eq. (33). μ̄i is the normalized
weighting function:

μ
μ μ

μ μ
¯ ( ( ) ( )) =

∏ ( ) ∏ ( )
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= =

= = =
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μ ( )x
X t

t
i and μ ( )u

U t
t
i are the membership functions of xt and ut ,

respectively. ( ) = [ ( ) … ( )] ∈ k x k x kx , n
T n

1 is the state variable ma-
trix, ( ) ∈ ku m is the control input vector and ˜ ( )ky is the output of
the system.

A dynamic state feedback robust TS fuzzy controller (RTSFC)
(Fig. 1) with N rules is proposed. The structure of rule Rjof the
controller is described as follows:

ζ

ζ ζ

( ) … ( )

( ) = ( ) + ( )

( ) = ( − ) + ( − ) ( ) = ( ) − ( ) ( )

R x k X x k X

k k k
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e e r Cx
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THEN ,

1 1 , 41

j j
n n

j

j j

1 1

where ζ is the integral of the error vector e. Kj is the proportional
feedback gain and kj is the integral gain of rule j. r(k) is the re-
ference signal. By using the TS inference mechanism, the output of
the controller ( )ku described by Eq. (41) at time instance k can be
calculated as:

{ }∑ ζ( ) = ¯ ( ( ))⋅ ( ) + ( )
( )=

k v k k ku x K x k
42j

N

j j j
1

where ( ) = [ ( ) … ( )] ∈ k x k x kx , n
T n

1 is the state variable matrix, v̄j is
the normalized firing strength of the jth rule:

ν

ν
¯ ( ( )) =

∏ ( )
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and ν ( )x
X t

t
i is the membership functions of xt .

By substituting Eq. (42) into Eq. (39), the closed loop equations
can be obtained:

{ }( )
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∑ ∑ μ
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ζ ζ
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1 1 1 44
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where μ= ∑ ¯=A Ai
M

i i0 1 , μΔ = ∑ ¯ Δ=A Ai
M

i i0 1 , μ= ∑ ¯=B Bi
M

i i0 1 ,

μΔ = ∑ ¯ Δ=B Bi
M

i i0 1 , = ∑ ¯= vK Kj
N

j j0 1 and = ∑ ¯= vk kj
N

j j0 1 .
With the following vectors and matrices de-

fined: ζ( ) = [ ( ) ( )]k k kz x T, = [ ]K K k0 0 , =
−

⎡
⎣⎢

⎤
⎦⎥A A

C I
00 ,

Δ ˜ = Δ ˜

−

⎡
⎣⎢

⎤
⎦⎥A A

C I
00 , = [ ]B B 00

T and Δ ˜ = [Δ ˜ ]B B 00
T, the closed loop

system can be rewritten as

( )˜( + ) = + Δ ˜ + ( + Δ ˜ ) ( ) ( )k kz A A B B K z1 45

where ˜( + )kz 1 is the predicted interval value of the state variable
vector z.

The following lemma is an expansion of the lemma provided in
(Wang et al., 2014), in which the positive constant α is replaced by
a positive definite matrix Z.

Lemma 1. Given matrices E, F and a positive definite matrix Z, the
following inequality can be obtained:

≤
( )−

⎡
⎣⎢

⎤
⎦⎥

⎡
⎣⎢

⎤
⎦⎥

E F
F E

E ZE
F Z F

0

0

0

0 46

T

T

T

T 1

Proof. See Appendix A.

Based on Lemma 1 and the coefficient matrices of the type 2 TS
fuzzy model, a set of LMI is derived in Theorem 1. The feedback
gains of the RTSFC can be found from the solution of the LMI.

Theorem 1. Given a nonlinear control system approximated by a
type-2 TS fuzzy model as described in Eq. (38), which is obtained from
a type-2 FBFN system as described in Eq. (18). If there exists a matrix
Y, a positive symmetric matrix Q, positive definite diagonal matrices
Zij, a positive constantα, and the following LMI is satisfied:

α− ( − ) Δ + Δ +

Δ + Δ −

+ − +

≤

= … = … ( )
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A Q B Y Z

A Q B Y Q Z
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0

0

0, with
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im j im i j i

im im j ij

i i j ij

T T T T T T

1

1

then the system with a robust TS fuzzy controller as described in Eq.
(41) with ¯ = [ ] = −K K k Y Qj j j j

1 is quadratic stable with a convergent
rate α.

Proof. Define a Lyapunov function ( ( )) = ( ) ( )V k k kz z PzT where P is
a positive definite matrix. The system is stable with a convergent
rate α when

αΔ ( ) + ( ) ≤ ( )V Vz z 0 48

which is equivalent to
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The above inequality can be written in the matrix form as:

α

Δ

− ( − ) ( + Δ ˜ ) + ( + Δ ˜ )

( + Δ ˜ ) + ( + ˜ ) −
≤

( )−

⎡
⎣
⎢⎢

⎤
⎦
⎥⎥

P A A K B B

A A B B K P

1
0

50

T T T

1

α− ( − ) +
+ −

+ Δ ˜ + Δ ˜

Δ ˜ + Δ ˜
≤

( )−

⎡
⎣⎢

⎤
⎦⎥

⎡
⎣
⎢⎢

⎤
⎦
⎥⎥

P A K B

A BK P
A K B

A BK

1 0
0

0
51

T T T

1

T T T

By applying Lemma 1, the following can be obtained:
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where μ= ∑ ∑ ¯ ¯= = vZ Zi
M

j
N

i j ij1 1 , Zij is a positive definite diagonal

matrix.
From (52), inequality (51) is satisfied if
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Since Zij is a positive definite diagonal matrix, the following
inequality can be obtained:

( ) ( )
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where ΔAim and ΔBim can be calculated by Eq. (37). Hence, in-
equality (54) is satisfied if
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The above inequality can be rewritten as
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where = ¯Y K Qj j , ¯ = [ ]K K kj j j . Since μ̄ ¯ ≥v 0i j , the above inequality is
satisfied if each term under the summation is negative semi de-
finite. Hence, the theorem is proven. □

Theorem 1provides a method to obtain a robust TS fuzzy con-
troller that not only can guarantee the system stability but also can
achieve good transient performance. The designer can use the
convergent rate to adjust how fast the system converges to steady
state values. Since the LMI set does not depend on the uncertainty
norm but on the linear coefficient matrices of the local linear
systems that maximize the Lyapunov function, the stability con-
ditions provided in this paper are much more relaxed than other
robust controller's conditions that are based on normed bounded
uncertainties. The result is a robust TS controller that can achieve
performance as good as a TS controller designed for a system
without uncertainty.
5. Simulation results on an electrohydraulic actuator

In this section, performance comparisons on an electro-
hydraulic actuator (EHA) between the RTSFC, the robust sliding
mode controller (Lin et al., 2013) and the H1 sliding mode con-
troller (Zhang et al., 2014) are presented. The electrohydraulic
actuator is driven by a bidirectional fixed displacement gear pump.
A special symmetrical actuator is connected with the load and the
motion of the load is controlled by varying the speed of the
electric motor. In (Wang et al., 2008), a nonlinear model of the
hydraulic part of the EHA system was developed as follows:
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where x x x, and1 2 3 are the position (m), velocity (m/s) and accel-
eration of the load (m/s2), respectively; ( )u k represents the rota-
tion speed of the bidirectional hydraulic pump (rpm), which is also
the control signal of the system. Other parameters can be found in
Table 1.

The uncertainties of the EHA are introduced by time-varying
friction effects, which are included in the variations of the coeffi-
cients of the nonlinear actuator friction a a a, and1 2 3 (Lin et al.,



Table 2
Training cases.

Case Δa1 Δa2 Δa3

1 0.1 0.1 0.1
2 0 0.1 0

Fig. 2. NDEI during training of type 2 FBFNs.

Fig. 3. Nominal system responses (u¼30 rpm).

Table 1
System parameters (Lin et al., 2013; Wang et al., 2008; Zhang et al., 2014).

Symbol Name Value

M Mass of the load 20 kg
Ap Pressure area in the symmetric actuator × −5.05 10 m4 2

Dp Pump displacement × −1.6925 10 m /rad7 3

βe Bulk modulus of the hydraulic oil ×2.1 10 Pa8

CT Lumped leakage coefficient × ⋅−5 10 m /s Pa13 3

V0 Mean volume of the hydraulic actuator × −6.85 10 m5 3

ω ω ω, ,1 2 3 Lumped system noises and disturbances × −0.01 10 m3
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4, = −a 1450o2 , =a 46o3 .

Based on the experimental data, Lin et al. (2013) have shown
that the output of the systems lies within the ten-percent variation
of the time-varying friction coefficients (a1, a2 and a3). By using the
same amount of uncertainties to construct the type-2 FBFN model
and design the controller, the performance comparison of the
controllers could be made. It is noted that the type-2 FBFN is de-
signed solely based on the input and output data, not on the
structure of the uncertainties in the system model. Hence, the
model can be applied to other systems with uncertainty or un-
known dynamics.

A type-2 FBFN model is used to approximate the state variable
x3 of the nonlinear system. The structure of rule j of the FBFN has
the following form:

( ) ( ) ( )

( )

˜ ( + ) = ˜ ( )

R x k X x k X x k X

u k U

x k G

: IF is and is and is

and is

THEN 1 62

j j j j

j

j

1 1 2 2 3 3

3

where ˜ ( + )x k 13 is the predicted interval value of the state variable

vector x3. G̃ j is an interval type-2 fuzzy set with its centroid w̃ j as
an interval set: ˜ = [ ]w w w,p

j
l
j

r
j .

In order to evaluate the performances of the type-2 FBFN for
capturing the uncertainties of the data, the type-2 FBFN is trained
with the training data generated from the nonlinear system, then
comparisons between the outputs of the type-2 FBFN and the
nonlinear system are conducted. During the data generation pro-
cess, the uncertain parameters in the nonlinear model are assigned
with random values within the bounded ranges. In this work, the
type-2 FBFN model was obtained two times from the same non-
linear model with different amounts of uncertainties represented
by the nonlinear friction coefficients a1, a2 and a3. It has been
shown that 10% variations of the parameters a1, a2 and a3 can
reasonably capture the real friction in the actual system (Lin et al.,
2013). For each training data, the parameters a1, a2 and a3 were
chosen as random numbers within the lower and upper bounds as
shown in Eq. (61). The values of Δa1, Δa2, Δa3 can be found in
Table 2.

The training of the type-2 FBFNs took about 25 hours on a
computer with one 800 MHz AMD CPU core. However, the training
only needs to be done one time since it can capture the dynamics
of the system under the entire operating condition. Fig. 2 shows
the non-dimensional error indices (NDEI) during training in two
cases. The figure shows that the errors observed during the
training processes approach steady state values as the number of
hidden nodes is increased. Fig. 3 shows the system responses of
the nominal nonlinear system when the input is constant. Figs. 4
and 5 show the response comparison between the type-2 FBFN
and the uncertain nonlinear model under two uncertain condi-
tions and input values. It can be seen from the results that the
type-2 FBFN models are able to capture all the uncertainties of the
nonlinear system very “tightly”. The deviations from nominal re-
sponses of the type-2 FBFN are also very small, which proves that
the type-2 FBFN can approximate accurately the nonlinear system.

From the type-2 FBFN, a type-2 TS fuzzy model was obtained
by using the procedure as described in Section 3. The type-2 TS
fuzzy model has fours rules in which each rule has the following



Fig. 5. Deviations from nominal responses with u¼30 rpm, shaded areas indicate
the interval output deviation of the type-2 FBFN model, circle markers represent
sampling data measured from the responses of the uncertain nonlinear system.

Fig. 6. System response comparisons with a constant reference signal (r¼0.02 m)
between the RTSFC and the RSLMC.

Fig. 7. Control inputs from the RSTSFC under different convergence rate.

Fig. 8. System response comparisons between the RTSFC and the RH1SLMC with a
sinusoidal reference signal (solid: RTSFC α¼0.2, dash: RTSFC α¼0.1, dash-dot:
RH1SLMC).

Fig. 4. Deviations from nominal responses with u¼10 rpm, shaded areas indicate
the interval output deviation of the type-2 FBFN model, circle markers represent
sampling data measured from the responses of the uncertain nonlinear system.
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Table 3
Comparison of mean absolute errors be-
tween the RTSFC and the RHSLMC under si-
nusoidal reference signal.

Controller Mean absolute error (m)

RTSFC α¼0.2 7.7352e�05
RTSFC α¼0.1 1.3222e�04
RH1SLMC 1.6707e�04

Fig. 9. System response comparisons between the RTSFC and the RH1SLMC with a
spike reference signal (solid: RTSFC α¼0.2, dash-dot: RTSFC α¼0.1, dash:
RH1SLMC, dot: reference signal).
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The minimum and maximum values of matrices Ãi and B̃i are
given in Appendix B.

By solving the LMI given in Theorem 1, a robust TS fuzzy
controller (RTSFC) which has fours rules can be found. Each rule of
the controller has the following form:
ζ

ζ ζ

( ) ( )
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i i

j j

2 2 3 3

where the feedback gains of each rule for three different con-
vergent values are given in Appendix C.

To investigate the performances of the RTSFC when im-
plemented on the hydraulic actuator, simulations were conducted
in the MATLAB/SIMULINK environment. The computation time to
calculate the output of the RTSFC when using the DELL Optilex 960
PC is 0.01 ms. Hence, the RTSFC is very suitable for many real time
applications with small sampling time.

Fig. 6 shows the system responses of the hydraulic actuator
with the robust sliding mode controller (RSMC) (Lin et al., 2013)
and the RTSFC with two different convergent rates used. The ob-
jective of the controllers in this simulation is to drive the output
from 0 to 0.02 m. The results show that the higher the convergent
rate, the faster responses that the RTSFC can achieve. In the first
case ( α = 0.1), the settling time is less than 0.05 s while in the
second case α( = )0.1 , the settling time is about 0.08 s. The control
efforts of the RTSFC are shown in Fig. 7.

Fig. 8 shows the system response comparisons between the
RTSFC and the robust H1 sliding mode controller (RH1SMC)
(Zhang et al., 2014) with a sinusoidal reference signal under sys-
tem noises and disturbances (ω1, ω2, ω3). The values of ω1, ω2, ω3

are shown in Table 1. The mean absolute errors between the
controllers’ responses and the reference signals are shown in Ta-
ble 3. From the results, it can be seen that the RTSFC with a con-
vergent rate α = 0.2 can reduce the steady state error by almost 50
percent compared to the RH1SMC.

Fig. 9 shows the system response comparisons between the
RTSFC and the robust H1 sliding mode controller (RH1SMC)
(Zhang et al., 2014) with a spike reference signal under lump
system noises and disturbances (Table 1). From the results, it can
be seen that the RTSFC can follow the reference signal better than
RH1SMC with very small transient time. The control efforts of the
RTSFC can also be found in Fig. 9.
6. Conclusion

A new method of training an interval type-2 FBFN was pre-
sented. The antecedents of the FBFN are obtained by using the
adaptive least square with the genetic algorithm method, while
the interval values of the consequents are obtained by the active
set method. Moreover, a new technique was proposed to convert
the interval type-2 FBFN to an interval type-2 TS fuzzy model.
Based on the proposed methods, a robust controller was designed
based on a set of linear matrix inequalities that represent a relaxed
stability condition of the closed loop system. The convergence rate
allows the controller to be more flexible. Simulation results on an
electrohydraulic actuator demonstrate the robustness and better
performance of the proposed controller in comparison with the
other robust sliding mode controllers.
Appendix A: Proof of Lemma 1

The lemma can be proven by using the following property of
the matrix norm:

( )( )− − ≥ ( )− −GZ HZ GZ HZ 0 A.11/2 1/2 1/2 1/2 T
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which is equivalent to inequality (46). Hence, the lemma is proven.
Appendix B: Type 2 TS fuzzy model coefficient matrices

Rule R1
Table C.1
Feedback gains of the RTSFC for α = 0.03.

Rule Rj Kj kj

1 ⋅[− − − ]10 1.5068 0.0036 0.00015 ⋅0.0187 105

2 ⋅[− − − ]10 1.4550 0.0018 0.00015 ⋅0.0180 105

3 ⋅[− − − ]10 1.3753 0.0002 0.00015 ⋅0.0169 105

4 ⋅[− − − ]10 1.3486 0.0010 0.00015 ⋅0.0166 105

Table C.2
Feedback gains of the RTSFC for α = 0.05.

Rule Rj Kj kj

1 ⋅[− − − ]10 2.8885 0.0092 0.00015 ⋅0.0600 105

2 ⋅[− − − ]10 2.7527 0.0068 0.00015 ⋅0.0570 105

3 ⋅[− − − ]10 2.6014 0.0049 0.00015 ⋅0.0536 105

4 ⋅[− − − ]10 2.5460 0.0035 0.00015 ⋅0.0524 105

Table C.3
Feedback gains of the RTSFC for α = 0.1.

Rule Rj Kj kj

1 ⋅[− − − ]10 6.9056 0.0282 0.00025 ⋅0.2632 105

2 ⋅[− − − ]10 6.5493 0.0249 0.00025 ⋅0.2487 105

3 ⋅[− − − ]10 6.0553 0.0213 0.00025 ⋅0.2275 105

4 ⋅[− − − ]10 5.9091 0.0193 0.00025 ⋅0.2220 105

Table C.4
Feedback gains of the RTSFC for α = 0.2.

Rule Rj Kj kj

1 ⋅[− − − ]10 2.3785 0.0103 0.00006 ⋅0.1550 106

2 ⋅[ − − ]10 2.8299 0.0098 0.00006 ⋅0.1487 106

3 ⋅[− − − ]10 2.1143 0.0089 0.00006 ⋅0.1359 106

4 ⋅[− − − ]10 2.0772 0.0086 0.00006 ⋅0.1335 106
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Appendix C: Feedback gains of the RTSFC

See Table C.1,C.4
References

Baghbani, F., Akbarzadeh-T, M., Akbarzadeh, A., Ghaemi, M., 2016. Robust adaptive
mixed H2/H1 interval type-2 fuzzy control of nonlinear uncertain systems
with minimal control effort. Eng. Appl. Artif. Intell. 49, 1–26. http://dx.doi.org/
10.1016/j.engappai.2015.12.003.

Chadli, M., Guerra, T.M., 2012. LMI solution for robust static output feedback control
of discrete Takagi–Sugeno fuzzy models. IEEE Trans. Fuzzy Syst. 20, 1160–1165.
http://dx.doi.org/10.1109/TFUZZ.2012.2196048.

Dantzig, G.B., Orden, A., Wolfe, P., 1955. The generalized simplex method for
minimizing a linear form under linear inequality restraints. Pac. J. Math. 5,
183–195. http://dx.doi.org/10.2140/pjm.1955.5-2.

Gao, Q., Zeng, X.-J., Feng, G., Wang, Y., Qiu, J., 2012. T–S-fuzzy-model-based ap-
proximation and controller design for general nonlinear systems. IEEE Trans.
Syst. Man, Cybern. Part B, Cybern. 42, 1143–1154. http://dx.doi.org/10.1109/
TSMCB.2012.2187442.

Gill, P.E., Murray, W., Saunders, M. a, Wright, M.H., 1984. Procedures for optimi-
zation problems with a mixture of bounds and general linear constraints. ACM
Trans. Math. Softw. 10, 282–298. http://dx.doi.org/10.1145/1271.1276.

Gill, P.E., Murray, W., Wright, M.H., 1991. Numerical Linear Algebra and Optimiza-
tion vol. 1. Addison Wesley.

Goyal, V., Deolia, V.K., Sharma, T.N., 2015. Robust sliding mode control for nonlinear
discrete-time delayed systems based on neural network. Intell. Control. Autom.
06, 75–83. http://dx.doi.org/10.4236/ica.2015.61009.

http://dx.doi.org/10.1016/j.engappai.2015.12.003
http://dx.doi.org/10.1016/j.engappai.2015.12.003
http://dx.doi.org/10.1016/j.engappai.2015.12.003
http://dx.doi.org/10.1016/j.engappai.2015.12.003
http://dx.doi.org/10.1109/TFUZZ.2012.2196048
http://dx.doi.org/10.1109/TFUZZ.2012.2196048
http://dx.doi.org/10.1109/TFUZZ.2012.2196048
http://dx.doi.org/10.2140/pjm.1955.5-2
http://dx.doi.org/10.2140/pjm.1955.5-2
http://dx.doi.org/10.2140/pjm.1955.5-2
http://dx.doi.org/10.1109/TSMCB.2012.2187442
http://dx.doi.org/10.1109/TSMCB.2012.2187442
http://dx.doi.org/10.1109/TSMCB.2012.2187442
http://dx.doi.org/10.1109/TSMCB.2012.2187442
http://dx.doi.org/10.1145/1271.1276
http://dx.doi.org/10.1145/1271.1276
http://dx.doi.org/10.1145/1271.1276
http://refhub.elsevier.com/S0952-1976(16)30068-9/sbref6
http://refhub.elsevier.com/S0952-1976(16)30068-9/sbref6
http://dx.doi.org/10.4236/ica.2015.61009
http://dx.doi.org/10.4236/ica.2015.61009
http://dx.doi.org/10.4236/ica.2015.61009


P.D. Ngo, Y.C. Shin / Engineering Applications of Artificial Intelligence 53 (2016) 74–85 85
Hsu, C.-F., Lee, T.-T., Tanaka, K., 2015. Intelligent nonsingular terminal sliding-mode
control via perturbed fuzzy neural network. Eng. Appl. Artif. Intell. 45, 339–349.
http://dx.doi.org/10.1016/j.engappai.2015.07.014.

Hu, J., Wang, Z., Gao, H., Stergioulas, L.K., 2012. Robust sliding mode control for
discrete stochastic systems with mixed time delays, randomly occurring un-
certainties, and randomly occurring nonlinearities. IEEE Trans. Ind. Electron. 59,
3008–3015. http://dx.doi.org/10.1109/TIE.2011.2168791.

Jin, X., Shin, Y.C., 2015. Nonlinear discrete time optimal control based on Fuzzy
Models. Journal of Intelligent & Fuzzy Systems 29 (2), 647–658. http://dx.doi.
org/10.3233/IFS-141376.

Karnik, N.N., Mendel, J.M., Liang, Q., 1999. Type-2 fuzzy logic systems. IEEE Trans.
Fuzzy Syst. 7, 643–658. http://dx.doi.org/10.1109/91.811231.

Khalil, H., 2002. Nonlinear Systems. Prentice Hall, New Jersey.
Lee, C.W., Shin, Y.C., 2003. Construction of fuzzy systems using least-squares

method and genetic algorithm. Fuzzy Sets Syst. 137, 297–323. http://dx.doi.org/
10.1016/S0165-0114(02)00344-5.

Lee, C.W., Shin, Y.C., 2001. Construction of fuzzy basis function networks using
adaptive least squares method. In: IFSA World Congress and 20th NAFIPS In-
ternational Conference. IEEE, Vancouver, BC. pp. 2630–2635. doi:10.1109/NA
FIPS.2001.943638.

Lee, H., 2011. Robust adaptive fuzzy control by backstepping for a class of MIMO
nonlinear systems. IEEE Trans. Fuzzy Syst. 19, 265–275. http://dx.doi.org/
10.1109/TFUZZ.2010.2095859.

Lee, H., Tomizuka, M., 2000. Robust adaptive control using a universal approx-
imator for SISO nonlinear systems. IEEE Trans. Fuzzy Syst. 8, 95–106. http://dx.
doi.org/10.1109/91.824777.

Lee, H.J., Park, J.B., Chen, G., 2001. Robust fuzzy control of nonlinear systems with
parametric uncertainties. IEEE Trans. Fuzzy Syst. 9, 369–379. http://dx.doi.org/
10.1109/91.919258.

Li, Y., Tong, S., Liu, Y., Li, T., 2014. Adaptive fuzzy robust output feedback control of
nonlinear systems with unknown dead zones based on a small-gain approach.
IEEE Trans. Fuzzy Syst. 22, 164–176. http://dx.doi.org/10.1109/
TFUZZ.2013.2249585.

Liang, Q., Mendel, J.M., 2000. Interval type-2 fuzzy logic systems: theory and de-
sign. IEEE Trans. Fuzzy Syst. 8, 535–550. http://dx.doi.org/10.1109/91.873577.

Lin, C.-K., 2007. Robust adaptive critic control of nonlinear systems using fuzzy
basis function networks: an LMI approach. Inf. Sci. 177, 4934–4946. http://dx.
doi.org/10.1016/j.ins.2007.06.017.

Lin, Y., Shi, Y., Burton, R., 2013. Modeling and robust discrete-time sliding-mode
control design for a fluid power electrohydraulic actuator (EHA) system. IEEE/
ASME Trans. Mechatron. 18, 1–10. http://dx.doi.org/10.1109/
TMECH.2011.2160959.

Liu, Z., Wang, F., Zhang, Y., Chen, X., Phillip Chen, C.L., 2014. Adaptive fuzzy output-
feedback controller design for nonlinear systems via backstepping and small-
gain approach. IEEE Trans. Cybern. 44, 1714–1725. http://dx.doi.org/10.1109/
TCYB.2013.2292702.

Mandal, P., Sarkar, B.K., Saha, R., Chatterjee, A., Mookherjee, S., Sanyal, D., 2015.
Real-time fuzzy-feedforward controller design by bacterial foraging optimiza-
tion for an electrohydraulic system. Eng. Appl. Artif. Intell. 45, 168–179. http:
//dx.doi.org/10.1016/j.engappai.2015.06.018.

MathWorks, 2015. MATLAB optimization toolbox: User's Guide (r2015a) [WWW
Document]. URL 〈http://www.mathworks.com/help/pdf_doc/optim/optim_tb.
pdf〉 (accessed 02.06.15).

Mehrotra, S., 1992. On the implementation of a primal-dual interior point method.
SIAM J. Optim. 2, 575–601. http://dx.doi.org/10.1137/0802028.

Méndez, G.M., de los Angeles Hernandez, M., 2009. Hybrid learning for interval
type-2 fuzzy logic systems based on orthogonal least-squares and back-pro-
pagation methods. Inf. Sci. 179, 2146–2157. http://dx.doi.org/10.1016/j.
ins.2008.08.008.

Ngo, P.D., Shin, Y.C., 2015. Gain estimation of nonlinear dynamic systems modeled
by an FBFN and the maximum output scaling factor of a self-tuning PI fuzzy
controller. Eng. Appl. Artif. Intell. 42, 1–15. http://dx.doi.org/10.1016/j.
engappai.2015.03.004.

Rubio-Solis, A., Panoutsos, G., 2015. Interval type-2 radial basis function neural
network: a modeling framework. IEEE Trans. Fuzzy Syst. 23, 457–473. http://dx.
doi.org/10.1109/TFUZZ.2014.2315656.

Salgado, I., Camacho, O., Yáñez, C., Chairez, I., 2014. Proportional derivative fuzzy
control supplied with second order sliding mode differentiation. Eng. Appl.
Artif. Intell. 35, 84–94. http://dx.doi.org/10.1016/j.engappai.2014.06.005.

Sato, M., 2009. Robust model-following controller design for LTI systems affected
by parametric uncertainties: a design example for aircraft motion. Int. J. Con-
trol. 82, 689–704. http://dx.doi.org/10.1080/00207170802225948.

Sloth, C., Esbensen, T., Niss, M.O.K., Stoustrup, J., Odgaard, P.F., 2009. Robust LMI-
based control of wind turbines with parametric uncertainties. In: Proceedings
of the 18th IEEE International Conference on Control Applications. IEEE, Saint
Petersburg, Russia. pp. 776–781. http://dx.doi:10.1109/CCA.2009.5281171.

Tong, S.-C., He, X.-L., Zhang, H.-G., 2009. A combined backstepping and small-gain
approach to robust adaptive fuzzy output feedback control. IEEE Trans. Fuzzy
Syst. 17, 1059–1069. http://dx.doi.org/10.1109/TFUZZ.2009.2021648.

Wang, L.-X., Mendel, J., 1992. Fuzzy basis functions, universal approximation, and
orthogonal least-squares learning. IEEE Trans. Neural Netw. 3, 807–814. http:
//dx.doi.org/10.1109/72.159070.

Wang, S., Habibi, S., Burton, R., 2008. Sliding mode control for an electrohydraulic
actuator system with discontinuous non-linear friction. Proc. Inst. Mech. Eng.
Part I J. Syst. Control. Eng. 222, 799–815. http://dx.doi.org/10.1243/
09596518JSCE637.

Wang, X., Yaz, E.E., Long, J., 2014. Robust and resilient state-dependent control of
discrete-time nonlinear systems with general performance criteria. Syst. Sci.
Control. Eng. 2, 48–54. http://dx.doi.org/10.1080/21642583.2013.877858.

Yao, J., Jiao, Z., Ma, D., 2014a. Extended-state-observer-based output feedback
nonlinear robust control of hydraulic systems with backstepping. IEEE Trans.
Ind. Electron. 61, 6285–6293. http://dx.doi.org/10.1109/TIE.2014.2304912.

Yao, J., Jiao, Z., Ma, D., Yan, L., 2014b. High-accuracy tracking control of hydraulic
rotary actuators with modeling uncertainties. IEEE/ASME Trans. Mechatron. 19,
633–641. http://dx.doi.org/10.1109/TMECH.2013.2252360.

Zhang, H., Liu, X., Wang, J., Karimi, H.R., 2014. Robust H1 sliding mode control with
pole placement for a fluid power electrohydraulic actuator (EHA) system. Int. J.
Adv. Manuf. Technol. 73, 1095–1104. http://dx.doi.org/10.1007/
s00170-014-5910-8.

Zhang, Y., 1998. Solving large-scale linear programs by interior-point methods
under the Matlab Environment. Optim. Methods Softw. 10, 1–31. http://dx.doi.
org/10.1080/10556789808805699.

http://dx.doi.org/10.1016/j.engappai.2015.07.014
http://dx.doi.org/10.1016/j.engappai.2015.07.014
http://dx.doi.org/10.1016/j.engappai.2015.07.014
http://dx.doi.org/10.1109/TIE.2011.2168791
http://dx.doi.org/10.1109/TIE.2011.2168791
http://dx.doi.org/10.1109/TIE.2011.2168791
http://dx.doi.org/10.3233/IFS-141376
http://dx.doi.org/10.3233/IFS-141376
http://dx.doi.org/10.3233/IFS-141376
http://dx.doi.org/10.3233/IFS-141376
http://dx.doi.org/10.1109/91.811231
http://dx.doi.org/10.1109/91.811231
http://dx.doi.org/10.1109/91.811231
http://refhub.elsevier.com/S0952-1976(16)30068-9/sbref12
http://dx.doi.org/10.1016/S0165-0114(02)00344-5
http://dx.doi.org/10.1016/S0165-0114(02)00344-5
http://dx.doi.org/10.1016/S0165-0114(02)00344-5
http://dx.doi.org/10.1016/S0165-0114(02)00344-5
http://doi:10.1109/NAFIPS.2001.943638
http://doi:10.1109/NAFIPS.2001.943638
http://dx.doi.org/10.1109/TFUZZ.2010.2095859
http://dx.doi.org/10.1109/TFUZZ.2010.2095859
http://dx.doi.org/10.1109/TFUZZ.2010.2095859
http://dx.doi.org/10.1109/TFUZZ.2010.2095859
http://dx.doi.org/10.1109/91.824777
http://dx.doi.org/10.1109/91.824777
http://dx.doi.org/10.1109/91.824777
http://dx.doi.org/10.1109/91.824777
http://dx.doi.org/10.1109/91.919258
http://dx.doi.org/10.1109/91.919258
http://dx.doi.org/10.1109/91.919258
http://dx.doi.org/10.1109/91.919258
http://dx.doi.org/10.1109/TFUZZ.2013.2249585
http://dx.doi.org/10.1109/TFUZZ.2013.2249585
http://dx.doi.org/10.1109/TFUZZ.2013.2249585
http://dx.doi.org/10.1109/TFUZZ.2013.2249585
http://dx.doi.org/10.1109/91.873577
http://dx.doi.org/10.1109/91.873577
http://dx.doi.org/10.1109/91.873577
http://dx.doi.org/10.1016/j.ins.2007.06.017
http://dx.doi.org/10.1016/j.ins.2007.06.017
http://dx.doi.org/10.1016/j.ins.2007.06.017
http://dx.doi.org/10.1016/j.ins.2007.06.017
http://dx.doi.org/10.1109/TMECH.2011.2160959
http://dx.doi.org/10.1109/TMECH.2011.2160959
http://dx.doi.org/10.1109/TMECH.2011.2160959
http://dx.doi.org/10.1109/TMECH.2011.2160959
http://dx.doi.org/10.1109/TCYB.2013.2292702
http://dx.doi.org/10.1109/TCYB.2013.2292702
http://dx.doi.org/10.1109/TCYB.2013.2292702
http://dx.doi.org/10.1109/TCYB.2013.2292702
http://dx.doi.org/10.1016/j.engappai.2015.06.018
http://dx.doi.org/10.1016/j.engappai.2015.06.018
http://dx.doi.org/10.1016/j.engappai.2015.06.018
http://dx.doi.org/10.1016/j.engappai.2015.06.018
http://www.mathworks.com/help/pdf_doc/optim/optim_tb.pdf
http://www.mathworks.com/help/pdf_doc/optim/optim_tb.pdf
http://dx.doi.org/10.1137/0802028
http://dx.doi.org/10.1137/0802028
http://dx.doi.org/10.1137/0802028
http://dx.doi.org/10.1016/j.ins.2008.08.008
http://dx.doi.org/10.1016/j.ins.2008.08.008
http://dx.doi.org/10.1016/j.ins.2008.08.008
http://dx.doi.org/10.1016/j.ins.2008.08.008
http://dx.doi.org/10.1016/j.engappai.2015.03.004
http://dx.doi.org/10.1016/j.engappai.2015.03.004
http://dx.doi.org/10.1016/j.engappai.2015.03.004
http://dx.doi.org/10.1016/j.engappai.2015.03.004
http://dx.doi.org/10.1109/TFUZZ.2014.2315656
http://dx.doi.org/10.1109/TFUZZ.2014.2315656
http://dx.doi.org/10.1109/TFUZZ.2014.2315656
http://dx.doi.org/10.1109/TFUZZ.2014.2315656
http://dx.doi.org/10.1016/j.engappai.2014.06.005
http://dx.doi.org/10.1016/j.engappai.2014.06.005
http://dx.doi.org/10.1016/j.engappai.2014.06.005
http://dx.doi.org/10.1080/00207170802225948
http://dx.doi.org/10.1080/00207170802225948
http://dx.doi.org/10.1080/00207170802225948
http://doi:10.1109/CCA.2009.5281171
http://dx.doi.org/10.1109/TFUZZ.2009.2021648
http://dx.doi.org/10.1109/TFUZZ.2009.2021648
http://dx.doi.org/10.1109/TFUZZ.2009.2021648
http://dx.doi.org/10.1109/72.159070
http://dx.doi.org/10.1109/72.159070
http://dx.doi.org/10.1109/72.159070
http://dx.doi.org/10.1109/72.159070
http://dx.doi.org/10.1243/09596518JSCE637
http://dx.doi.org/10.1243/09596518JSCE637
http://dx.doi.org/10.1243/09596518JSCE637
http://dx.doi.org/10.1243/09596518JSCE637
http://dx.doi.org/10.1080/21642583.2013.877858
http://dx.doi.org/10.1080/21642583.2013.877858
http://dx.doi.org/10.1080/21642583.2013.877858
http://dx.doi.org/10.1109/TIE.2014.2304912
http://dx.doi.org/10.1109/TIE.2014.2304912
http://dx.doi.org/10.1109/TIE.2014.2304912
http://dx.doi.org/10.1109/TMECH.2013.2252360
http://dx.doi.org/10.1109/TMECH.2013.2252360
http://dx.doi.org/10.1109/TMECH.2013.2252360
http://dx.doi.org/10.1007/s00170-014-5910-8
http://dx.doi.org/10.1007/s00170-014-5910-8
http://dx.doi.org/10.1007/s00170-014-5910-8
http://dx.doi.org/10.1007/s00170-014-5910-8
http://dx.doi.org/10.1080/10556789808805699
http://dx.doi.org/10.1080/10556789808805699
http://dx.doi.org/10.1080/10556789808805699
http://dx.doi.org/10.1080/10556789808805699

	Modeling of unstructured uncertainties and robust controlling of nonlinear dynamic systems based on type-2 fuzzy basis...
	Introduction
	Training interval type-2 FBFN models by using genetic algorithm and active set method
	Obtaining the interval type-2 T–S fuzzy model from the interval type-2 A1-C2 FBFN model
	Robust TS fuzzy controller with integral term
	Simulation results on an electrohydraulic actuator
	Conclusion
	Appendix A: Proof of Lemma 1
	Appendix B: Type 2 TS fuzzy model coefficient matrices
	Appendix C: Feedback gains of the RTSFC
	References




