Particle Swarm Optimization

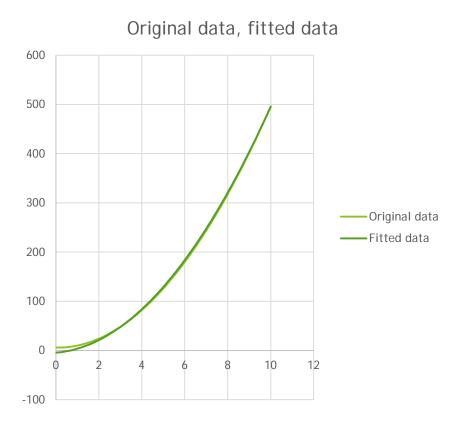
Akash Patil

Problem Definition

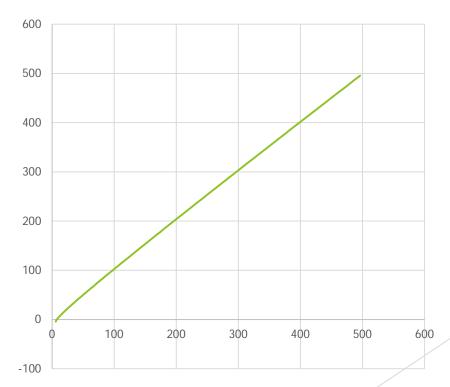
- A simple example given function
 - ► Find the maximum and position of maximum for 25 (x 05)^2
- Fitting a polynomial through a given data
 - Data for (x,y) given for some number of points
 - ► Find the coefficients a,b,c,... for polynomial of type a + b*x^2 + c*x^3 ...

Basics of Particle Swarm Optimization

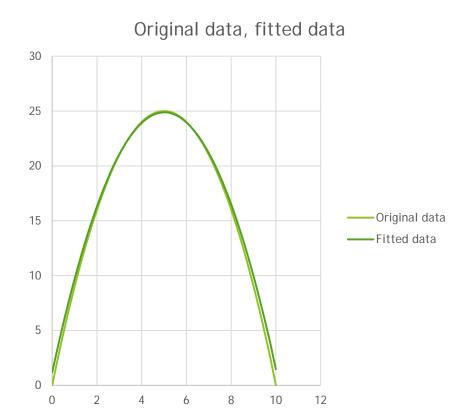
- Generate initial population randomly
- Each particle is searching for its optimum
- Each particle remembers its own personal best
- Each particle is moving and so has a velocity associated with it
- Velocity is has 2 main components -
 - Towards its pbest
 - ► Towards the gbest in the swarm
- v = v + c1*rand()*(pbest_position current_position) +
 c2*rand()*(gbest_position current_position)

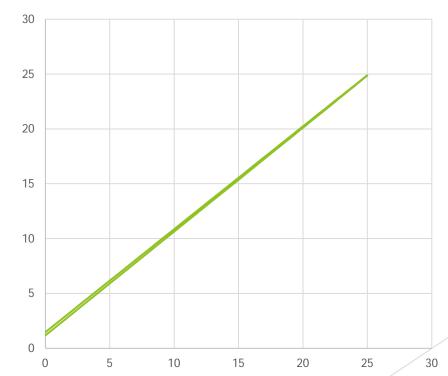

Maximum of a given function

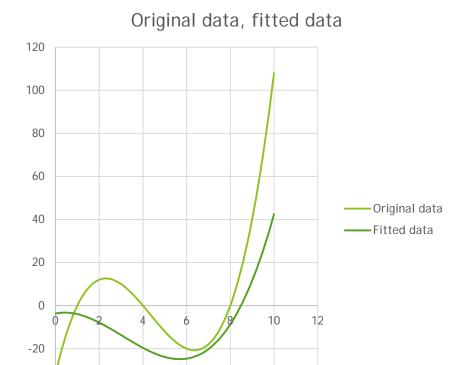
- Function chosen $y = 25 (x 5)^2$
- ▶ 10 particles
- ▶ 200 iterations
- Converges to (5,25)
- Convergence depends on values of C1 and C2
- ▶ Too low, particles can't move much, too high, particles move too fast


Fitting a polynomial through given data

- Generated 2 arrays x and y, with y = f(x) + rand()
- In this case, a particle would be a tuple of (a,b,c..)
- Can be considered to be a PSO in multiple dimensions
- ▶ The matlab function returns an array of coefficients of the fitted polynomial
- Given function -> 6 x +5*x^2
 - output function -> -4.4168 + 3.427*x + 4.6557*x^2
- Given function -> $x^*(10 x)$
 - output function -> 1.1814+ 9.451*x + -0.9422*x^2
- Given function -> (x-1)*(x-4)*(x-8)
 - ightharpoonup output function -> -3.7254 + 2.1919*x + -2.7297*x^2 + 0.2972*x^3


Plots $6 - x + 5*x^2$


Fitted data vs original data


Plots $x^*(10 - x)$

Plots $(x-1)^*(x-4)^*(x-8)$

Fitted data vs original data

Conclusion

- Particle swarm optimization code, in this case, works good in finding the optimal solution of the given problems if the degree of polynomial is given as 2 i.e. quadratic
- When the degree is increased to 4, the code isn't able to provide a good solution
- The different parameters that can be varied to control the performance of the algorithm are -
 - Number of particles (generally 10-50)
 - more particles, more region covered
 - number of iterations
 - ▶ C1 importance of personal best
 - C2 importance of global best