Bin Zhang

Problem Statement

• Design of a coil spring system with least material (minimum volume)

minimize
$$f(\mathbf{x}, \mathbf{d}) = \pi^{-1} x_1 d_2^2 (d_1 + 2)/4$$

Design variables:

- x1: D, the winding diameter, continuous variable
- d1: N, the number of spring coils, integer, 1,2,3,.....
- d2: d, the wire diameter, which can only take the following 42 values:

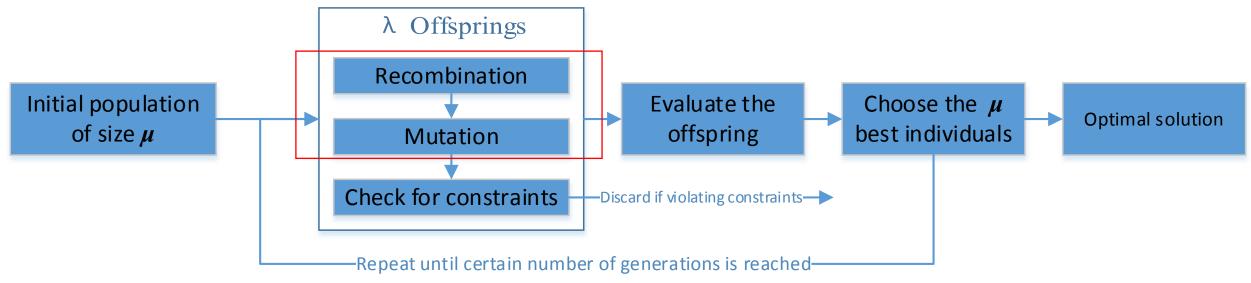
	0.009	.0095	.0104	.0118	.0128	.0132		
	.014	.015	.0162	.0173	.018	.020	F	d
	.023	.025	.028	.032	.035	.041		
	.047	.054	.063	.072	.080	.092		
	.105	.120	.135	.148	.162	.177		D
	.192	.207	.225	.244	.263	.283		
3/31/2016	.307	.331	.362	.394	.4375	.500		

Problem Statement

• **Constraints:** maximum shear strength, maximum free length, maximum deflection under preload, deflection from preload to maximum load, etc.

$$\begin{split} g_{1}(\mathbf{x},\mathbf{d}) &= S - \frac{8C_{\mathrm{f}}F_{\mathrm{max}}x_{1}}{\pi d_{2}^{3}} \geq 0 \\ g_{2}(\mathbf{x},\mathbf{d}) &= l_{\mathrm{max}} - l_{\mathrm{f}} \geq 0 \\ g_{3}(\mathbf{x},\mathbf{d}) &= d_{2} - d_{\mathrm{min}} \geq 0 \\ g_{4}(\mathbf{x},\mathbf{d}) &= D_{\mathrm{max}} - x_{1} - d_{2} \geq 0 \\ g_{5}(\mathbf{x},\mathbf{d}) &= \frac{x_{1}}{d_{2}} - 3.0 \geq 0 \\ g_{6}(\mathbf{x},\mathbf{d}) &= \delta_{\mathrm{pm}} - \delta_{\mathrm{p}} \geq 0 \\ g_{7}(\mathbf{x},\mathbf{d}) &= l_{\mathrm{f}} - \delta_{\mathrm{p}} - \frac{F_{\mathrm{max}} - F_{\mathrm{p}}}{K} - 1.05(d_{1} + 2)d_{2} \geq 0 \\ g_{8}(\mathbf{x},\mathbf{d}) &= -\delta_{\mathrm{w}} - \frac{F_{\mathrm{max}} - F_{\mathrm{p}}}{K} \geq 0 \\ &S = 189000 \, psi \quad F_{\mathrm{max}} = 1000 \, lb \\ \delta_{\mathrm{min}} &= 0.2 \, in. \quad D_{\mathrm{max}} = 3.0 \, in. \quad F_{\mathrm{p}} = 300 \, lb \\ \delta_{\mathrm{mm}} &= 6.0 \, in. \quad \delta_{\mathrm{w}} = 1.25 \, in. \quad G = 11.5 \times 10^{6} \, psi \end{split}$$

- The original evolutionary strategy was developed for optimization problems with continuous variables.
- How could we handle continuous variables (x1), integer variables (d1) and discrete variables (d2) simultaneously?
- Extended (μ, λ) ES:



• Each individual consists not only of the design variables x and d, but also of the control vectors ξ and s, which controls the step size of mutation.

$$\mathbf{a} = \{(\mathbf{x}, \boldsymbol{\xi}), (\mathbf{d}, \mathbf{s})\}$$

Continuous Variables:

Recombination	Mutation
Parents: $(\mathbf{x}_{S}, \boldsymbol{\xi}_{S})$ and $(\mathbf{x}_{T}, \boldsymbol{\xi}_{T})$ Offspring: $\begin{cases} x_{i} = x_{S,i} \text{ or } x_{T,i} \\ \boldsymbol{\xi}_{i} = \frac{\boldsymbol{\xi}_{S,i} + \boldsymbol{\xi}_{T,i}}{2} \end{cases}$	$\xi_i' = \xi_i \cdot \exp\left(\tau' \cdot N(0, 1) + \tau \cdot N(0, 1)\right)$ $x_i' = x_i + \xi_i' \cdot N(0, 1)$ $\tau \propto \frac{1}{\sqrt{2\sqrt{n_x}}}, \tau' \propto \frac{1}{\sqrt{2n_x}}$

• Discrete Variables and Integer Variables:

- Map the discrete values to integer indices {1,2,...nj}
- The integer variable **d1** is mapped to itself
- The mutation operation is based on the integer index

0.009	0.0	0095	• • •	0.500
		\updownarrow		
	1 (2	. 42	

Recombination	Mutation
Parents: $(\mathbf{d}_{S}, \mathbf{s}_{S})$ and $(\mathbf{d}_{T}, \mathbf{s}_{T})$ Offspring: $\begin{cases} d_{i} = d_{S,i} \text{ or } d_{T,i} \\ s_{i} = \frac{s_{S,i} + s_{T,i}}{2} \end{cases}$	$s' = s \cdot \exp\left(\tau'' \cdot N(0,1)\right) \qquad \tau'' = \frac{1}{\sqrt{n_d}}$ $p = 1 - \frac{s/n_d}{(1 + (s/n_d)^2)^{1/2} + 1}$ $P\{z_j = k\} = \frac{p}{2 - p} (1 - p)^{ k }, k \in \mathbb{Z},$
	$d_j'=d_j+z_j, j=1,\ldots,n_d,$
	$P\{zj=k\}$ is the possibility for zj to take the value of k.

MATLAB Program

function [best,mean_cost,min_cost] = ExtendedES(lambda, miu, generations,xlim,dlim,D)

% lambda: offspring population

% miu: parent population

% generations: number of generations

% xlim: a nx by 2 matrix containing the limit of continuous variables

% dlim: a nd by 2 matrix containing the limit of discrete variables

% D: ceil array of the indexed values of the discrete variables

For the coil compression spring design problem

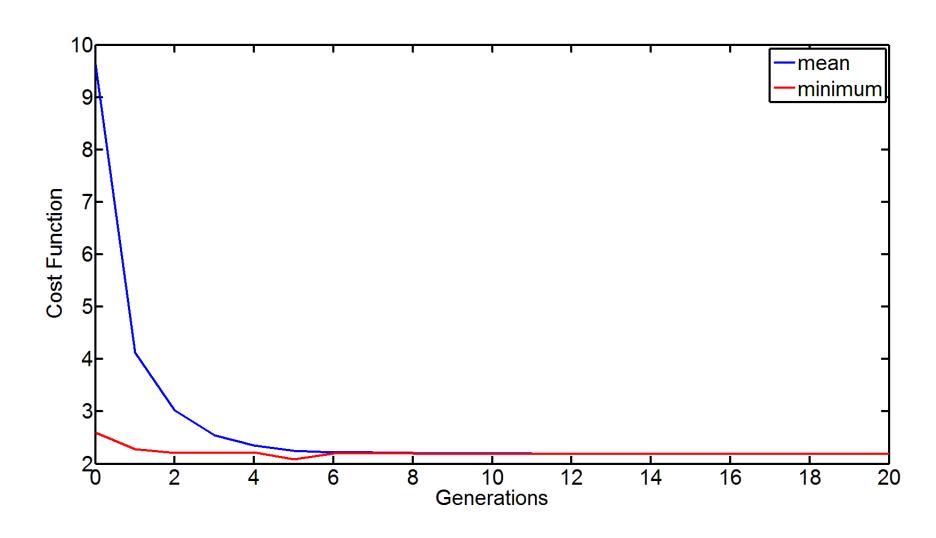
$$\mu = 150$$
 $\lambda = 1000$ generations = 20 $0 < x_1 < 5$ $1 < d_1 < 25$

Optimization Results

Optimum Solution of the Spring Design

Items	Sandgren (1990)	Chen and Tsao (1993)	Meta-GA (Wu and Chow, 1995)	ES	My results
x_1 (in.)	1.180701	1.2287	1.227411	1.10918	1.109175
d_1 (number of spring coils)	10	9	9	9	9
d_2 (in.)	0.283	0.283	0.283	0.263	0.263
g_1 (psi)	54.309	415.969	550.993	3615.633	3616.310
g ₂ (in.)	8.8187	8.9207	8.9264	9.176612	9.176636
g ₃ (in.)	0.08298	0.08300	0.08300	0.063000	0.063000
g ₄ (in.)	1.8193	1.7713	1.7726	1.627820	1.627825
95	1.1723	1.3417	1.3371	1.217414	1.217396
g ₆ (in.)	5.4643	5.4568	5.4585	5.464279	5.464286
g ₇ (in.)	0.0	0.0	0.0	0.0	0.0
g ₈ (in.)	0.0004	0.0174	0.0134	0.000017	6.039e-10
$f(\mathbf{x}, \mathbf{d}) (\text{in.}^3)$	2.7995	2.6709	2.6681	2.0823	2.0823

Optimization Results



Discussion

- By enumerative searching with **x1** resolution of **0.0001**, the solution {Spring diameter: 1.1092; Number of springs: 9; Wire diameter: 0.2630; Min f = 2.0823} is verified as the global optimal solution.
- The enumerative searching takes about 800s (CPU i5-4570R 2.7GHz)
- The extended ES optimization takes about 4.7s
- With $(\mu, \lambda) = (150,1000)$, we can always get the above optimal solution. Decreasing the population sizes, for example $(\mu, \lambda) = (15,100)$, will make the optimization result less consistent.
- As the population converges to the best solution very fast, increasing the number of generations offers less benefits.

Conclusion

- The extended evolutionary strategy is computational efficient and can handle continuous variables, integer variables and discrete variables.
- In extended ES, the discrete variables are mapped to integer indices, and the mutation operation is based on these integer indices.
- The optimization result is sensitive to the population size. A set of sufficient large population sizes need to be used so that the optimization result is consistent and close to the optimal solution.

Reference:

- 1. Sandgren, E. "Nonlinear integer and discrete programming in mechanical design optimization." Journal of Mechanical Design 112.2 (1990): 223-229.
- 2. Lee, Cheol W., and Yung C. Shin. "Evolutionary modelling and optimization of grinding processes." International Journal of Production Research 38.12 (2000): 2787-2813.