FLAME SPECTROSCOPY

Parts I and III by RADU MAVRODINEANU

Philips Laboratories, a Division of North American Philips Co., Inc.
Briarcliff Manor, New York

Part II by HENRI BOITEUX

Associate Director, Aimé Cotton Institute of Spectroscopy,
Centre National de la Recherche Scientifique
Boisserie, Seine et Oise, France

Fig. 17-11 Potential energy curve and vibration levels of a diatomic molecule (OH in its fundamental state, after [28]).
Fig. 18-7 Vibrational energy levels diagram of $A^3\Sigma$ and $X^3\Pi$ states, and transitions of OH molecule with Morse potential curves.
Fig. 17-1 Definition of \(\Lambda \).

a number \(\Sigma \) through the relation \(L \).
Fig. 17-3 Molecular electronic multiplet of a $^3\Pi$ (A = 1; S = 1) state. (a) Vector diagram. (b) Energy level diagram: in the middle, without interaction of A and S; to the left: with interaction and A positive (normal multiplet); to the right: with interaction and A negative (inverted multiplet).
NOTIONS ON THE T

Case (a)

Case (b)
Fig. 17-8 First rotational levels of the OH radical in its ground state showing the N numbering (vibrational level: $v = 0$).
Fig. 17-22 Comparison of case (a) and case (b) for a doublet state ($^2\Pi; S = \frac{1}{2}; 2S + 1 = 2$). (The separation between the $^2\Pi_{1\frac{1}{2}}$ and $^2\Pi_{0\frac{1}{2}}$ levels in case (a) is arbitrary and the Λ-doubling has not been indicated.)
Fig. 17.23 First rotational levels of a $^3\Pi_{1\frac{1}{2}}$ state. (a) Without taking account of the Λ-type doubling. (b) With Λ-type doubling (very exaggerated).

The Λ splitting constant a is a_l.
Fig. 17-14 (a) Transitions and (b) schematic representation of a vibration-rotation band of a diatomic molecule in a \(\Sigma \) state (neglecting the variation of the rotational constant \(B \) with the vibration and the centrifugal stretching).
\[\Delta J = J' - J = 0 \]

Fig. 17-17 Transitions and schematic representation of a vibration-rotation band of a diatomic molecule in a \(\Pi_{1\Sigma} \) state (\(\Lambda = 1; \Sigma = \frac{1}{2}; \Omega = 1 \frac{1}{2} \)).
Fig. 17.25 Energy level diagram showing the twelve kinds of transitions giving rise to the twelve branches of a $^3\Sigma^+ \rightarrow \Pi$ (case a) band. (The spin splitting of the $^3\Sigma^+$ state and the Λ-doubling of the $^\Pi$ state have been very exaggerated.)
Fig. 17-24 Energy level diagram showing the ten transitions giving rise to the ten branches of a ΣΣ - ΣΠ (case b) band. (The dotted transitions (ΔN = +2 or −2) do not occur in a strict case (b). The spin splitting and the Λ-doubling of the ΣΠ state have been very exaggerated.)