ME 687 Lects 3, 4, and 5
Characteristics of Laser Radiation and Laser Systems

Prof. Robert P. Lucht
Room 2204, Mechanical Engineering Building
School of Mechanical Engineering
Purdue University
West Lafayette, Indiana

Lucht@purdue.edu, 765-494-5623 (Phone)

August 24, 27, and 29, 2012
Outline of the Lecture

• Stimulated Emission and the Four-Level Laser

• Survey of Lasers Used for Spectroscopic Diagnostics

• Properties of Laser Radiation: Polarization of the Electric Field, Polarization Control of Laser Beams

• Properties of Laser Radiation: Gaussian Beam Propagation

• Frequency Conversion Techniques: Sum-Frequency Mixing and Difference-Frequency Mixing in Nonlinear Crystals
The concept of stimulated emission was first developed by Albert Einstein from thermodynamic considerations. Consider a system comprised of a two-level atom and a blackbody radiation field, both at temperature T.

\[[\rho_v] = J - s / m^3 \]
Interaction of Radiation with Atoms and Molecules: The Two-Level System

From thermodynamic equilibrium

\[N_2 A_{21} + N_2 B_{21} \rho_v = N_1 B_{12} \rho_v \quad [\rho_v] = J - s / m^3 \]

\[\rho_v = \frac{8 \pi h \nu^3}{c^3} \frac{1}{(e^{h\nu/kT} - 1)} \quad ; \quad \frac{N_2}{N_1} = \frac{g_2}{g_1} \exp \left(- \frac{\varepsilon_2 - \varepsilon_1}{kT} \right) \Rightarrow \]

\[A_{21} = \frac{8 \pi h \nu^3}{c^3} B_{21} \quad ; \quad g_2 B_{21} = g_1 B_{12} \]

Units of B must be consistent with units of \(\rho_v \), units of A are sec\(^{-1}\).
Further developments in this course will be in terms of A to avoid confusion on units.
The four-level laser system is an approximate description of the lasing process for almost every laser.

Population inversion between levels 2 and 1 maintained by the pumping process, fast relaxation rates γ_{32} and γ_{10}.

Types of Lasers Used for Diagnostics of Flames, Plasmas

HeNe, Argon-Ion Lasers
- Gas lasers, population inversion pumped by electric discharge
- Continuous as opposed to pulsed (lower peak powers)
- Fixed frequency as opposed to tunable (can't be tuned to species resonances): 633 nm for HeNe, 486 or 514 nm for Ar⁺
Nd:YAG Lasers
• Q-switched Nd:YAG laser is the workhorse laser for combustion diagnostics

• Q-switching gives 10 nsec pulse, > 1 J/pulse at 1064 nm, 100 MW peak power

• Typically YAG crystal is flashlamp-pumped, diode-laser-pumped models are now commercially available and capable of high-repetition-rate operation (10 kHz instead of 10 Hz)

• Fundamental output at 1064 nm rarely used for diagnostics, frequency-doubled output at 532, tripled at 355 nm, quadrupled at 266 nm more commonly used

• 532 nm output: dye laser pump, CARS pump beam, Mie and Rayleigh scattering, laser-induced incandescence (LII)
Q-Switched Nd:YAG Laser

Energy level diagram showing dominant pump bands and the 1064-nm laser transition for the Nd$^{3+}$ ion in the crystal host yttrium aluminum garnet. Diode pumping performed on the 790 nm transition.
Q-Switched Nd:YAG Laser

POWERLITE™ PRECISION II 9000 OPTICAL LAYOUT

1. Rear Mirror
2. Pockels Cell
3. 1/4 Wave Plate
4. Dielectric Polarizer
5. Oscillator Head
6. Output Coupler
7. IR Mirror
8. 1/2 Wave Plate
9. Amplifier Head
10. Rotator
11. Dichroics, 532 nm
12. Dichroics, 355 or 266 nm
Q-Switched Nd:YAG Laser

Flashlamp-pumped Nd:YAG rod in pump chamber

The pump chamber: a perfect balance between efficiency and mode quality
Q-Switched Nd:YAG Laser: Flashlamp-Pumped vs. Diode-Pumped

Flashlamp-pumped Q-switched Nd:YAG lasers

- Repetition rate: 10-30 Hz
- Pulse energy (532 nm): 1 J
- Pulse length: 2-10 ns
- Frequency width (532 nm): 0.001 cm$^{-1}$

Diode-pumped Q-switched Nd:YAG lasers

- Repetition rate: 1-30 kHz
- Pulse energy (532 nm): 10 mJ
- Pulse length: 2-100 ns
- Frequency width (532 nm): 1.0 cm$^{-1}$
High-Repetition-Rate Laser System

Edgewave Diode-Pumped Solid State Nd:YAG Laser: 5 kHz Rep Rate, Dual-Head, 6 mJ/Pulse at 532 nm, 7 nsec Pulses

Sirah Credo Dye Laser: 5 kHz Rep Rate, 500 \(\mu \)J/Pulse at 283 nm (2.5 W average power in UV)
Dye Laser – Tunable Frequency Output

- Fundamental output is tunable.
- Changing the angle of grating changes laser frequency.
- Different wavelength regions accessed with different dyes (400 nm – 1000 nm, further extended with frequency conversion techniques like frequency doubling).
- Frequency bandwidths can be very narrow (< 0.01 cm\(^{-1}\)).
- Dye laser pulses are typically the same length temporally as the pump source, dye has very short fluorescence lifetime.
Continuum Dye Laser – Nd:YAG-Pumped
Excimer Laser - Pulsed, Ultraviolet

- Gas laser, upper laser level is electronic level of molecules like KrF\(^*\) (248 nm), XeCl\(^*\) (308 nm), and ArF\(^*\) (193 nm); these molecules are stable only in the excited state.
- Pulse lengths of 30 nsec, pulse energies of up to a few hundred mJ, rep rates of more than 1 kHz.
- Tunable narrowband excimer lasers have been developed.
- Application of these lasers for UV Raman has increased because of high Raman cross sections in UV (cross section prop. to \(\nu^4\)), narrowband excimer can be tuned away from interfering LIF lines.
Ultrafast (Femtosecond) Laser Systems

- Based on oscillation and amplification in Titanium:Sapphire crystals (Ti:S)

- Pulse lengths of a few 10’s of fsec to a few psec with the same system architecture, output powers of ~10 W, rep rates of more than 1 kHz (many mJ per pulse at 1 kHz rep rate)

- Tunable radiation produced using computer controlled optical parametric amplifiers

Spectra-Physics Ultrafast Laser System
Coherent Ultrafast (Femtosecond) Laser System

Mantis Mode-Locked Ti:S Laser with Integrated OPSL Pump Laser
- 800 nm

Silhouette 128-Pixel MIIPS Pulse Shaper

Evolution-HE Nd:YLF Pump Laser
- 527 nm
- 90 W at 10 kHz

Legend Elite Ti:S Regenerative Amplifier and Single-Pass Amplifier
- 800 nm
- 13 W at 5 kHz
- 10.5 W at 10 kHz

OPerA Solo Optical Parametric Amplifier + Nonlinear Crystals
- 200 nm - 10 μm

Purdue University
Coherent Ultrafast Laser System
Ultrafast (Femtosecond) Laser Systems

Coherent Ultrafast Optical Parametric Amplifier

Typical OPerA Solo Tuning Curve
Legend Elite USP-1K-HE Pump (3.3 mJ)
Semiconductor or Diode Laser

• Very small and efficient, emission at wavelengths above about 350 nm

• Single frequency mode output using external cavity (ECDL) or distributed feedback (DFB) architecture to write grating on diode itself

• Frequency can be swept at very high rates

• Further development of these lasers is active area of research (higher power, lower and higher wavelengths)

Yariv, Introduction to Quantum Electronics, 1976
Electromagnetic Properties of Laser Radiation

- Infinite Plane Wave Approximation:
 Infinite plane wave with electric field polarized in x-direction, propagates in z-direction at speed c, properties uniform in x-y plane

\[
\vec{E}(\vec{r}, t) = \hat{x} \left\{ \frac{1}{2} E_0 \exp \left[-i (k z - \omega t) \right] + \frac{1}{2} E_0^* \exp \left[i (k z - \omega t) \right] \right\} \\
= \hat{x} \frac{1}{2} E_0 \exp \left[i (k z - \omega t) \right] + c.c.
\]

\[\omega = \text{angular frequency} = 2\pi v = \frac{2\pi c}{\lambda} \quad \quad k = \frac{2\pi}{\lambda}\]
Electromagnetic Properties of Laser Radiation

Given time t

Given spatial location z

$E_x(z)$

$E_x(t)$

λ

$1/\nu$

Purdue University
Linear Polarization, 45° to x-axis

\[\vec{E}(z,t) = \hat{x} E_{0x} \cos(kz - \omega t) + \hat{y} E_{0y} \cos(kz - \omega t + \pi) \]
Time Dependence of Linear Polarization

Linear Polarization, 45° to x-axis, z = 0

\[\vec{E}(z,t) = \hat{x} E_{0x} \cos(\omega t) + \hat{y} E_{0y} \cos(\omega t) \]

\[t = 0 \]

\[t = \pi/\omega \]

\[t = \pi/2\omega \]

\[t = 3\pi/2\omega \]
Polarization of Laser Radiation

Circular Polarization: electric field vector moves in a circle

\[\vec{E}(z,t) = \hat{x} E_{0x} \cos(kz - \omega t) + \hat{y} E_{0y} \cos(kz - \omega t + \frac{\pi}{2}) \]
In a birefringent crystal like calcite, refractive index is different for light polarized parallel to (e-wave) and perpendicular to (o-wave) the optic axis.

In calcite $n_o > n_e$

In Glan polarizer, crystal cut at angle θ such that

$$n_e < \frac{1}{\sin \theta} < n_o$$

so that o-ray undergoes total internal reflection.

Hecht, *Optics*, 1987
Half-wave plate are used to rotate the polarization of linearly polarized light. Quarter-wave plates are used to convert circular to linear polarization and vice versa.
"Good" laser beams have a Gaussian intensity profile

\[I(r) = \frac{2P}{\pi w^2} e^{-2r^2/w^2} \quad P = \text{power (W)}, \quad w = 1/e^2 \text{ radius} \]

Gaussian Beam Propagation

Gaussian beams propagate as Gaussians

\[w(z) = w_0 \sqrt{1 + \left(\frac{\lambda z}{\pi w_0^2} \right)^2} = w_0 \sqrt{1 + \left(\frac{z}{z_R} \right)^2} \]

for \(z \gg z_R \), \(w(z) = \frac{\lambda z}{\pi w_0} \)

\(z_R = \text{Rayleigh range} = \frac{\pi w_0^2}{\lambda} \)

FIGURE 17.1
Notation for a lowest-order gaussian beam diverging away from its waist.
Gaussian Beam: Transmission Through Aperture

Power transmission through circular aperture.

Effect of transmission through circular aperture.

Gaussian Beam Focusing

Focused waist: \(w_0 \, w_{\text{lens}} = \frac{\lambda \, f}{\pi} \)

\(d_0 = 1/e^2 \) diameter of focus \(= 2 \, w_0 \)

\[D = \frac{(\pi/2)(1/e^2 \text{ diameter on lens})}{\pi} = \pi \, w_{\text{lens}} \]

(99% energy contained)

\[d_0 = \frac{2 \, f \, \lambda}{D} \]

Gaussian beams focus as Gaussians

Siegman, Lasers, 1986
Nonlinear crystals are used commonly to convert laser beam from one spectral region to another, e.g., frequency-doubling to obtain ultraviolet light from visible light.

The process shown on the left is Type I sum-frequency mixing (SFM) in beta barium borate (BBO) or potassium dihydrogen phosphate (KDP). When $\omega_1 = \omega_2$, the process is referred to as frequency doubling.
Second-Harmonic Generation – Sum-Frequency Mixing (SFM) Process

β-BBO Crystal

ω – Fundamental Beam

2ω – Second Harmonic Beam
Frequency Doubling in Nonlinear Crystals

Yariv, Quantum Electronics, 1975
Fourier analysis of polarization induced in the nonlinear crystal by light field at angular frequency ω reveals component at angular frequency 2ω. Polarization in the crystal at 2ω serves as source term for development of light field at 2ω. Light field at 2ω builds up to significant intensity in the crystal only if all the atoms in the crystal are oscillating with the correct phase – the phase-matching condition.

Yariv, *Quantum Electronics*, 1975
Difference-Frequency Mixing (DFM) or the Optical Parametric Process

\[\omega_3 = \omega_2 + \omega_1 \]

- \(\omega_3 \) – Pump Beam
- \(\omega_1 \) – Idler Beam
- \(\omega_2 \) – Signal Beam

\(\beta \)-BBO Crystal