FROM LAST TIME...

Computer Systems (Combinational Logic)

- Sinks and Sources
- Fan In and Fan Out
- Decoupling Capacitors

UNIT 3: COMBINATIONAL LOGIC PARTE GRAMMABLE PROGRAMMABLE DEVICES

A NEAT BREADBOARD CAN BE A THING OF BEAUTY...

... BUT SPAGHETTI WIRING IS A PROBLEM

Image: http://denethor.wlu.ca/common/images/messywires.jpg

PROGRAMMABLE LOGIC DEVICES (PLDS) CAN FIX THIS MESS

Image: http://dangerousprototypes.com/2012/05/04/diy-ir-toy-and-cpld-breakout-boards/

THEORETICAL PLD

- Create an array of gates, or logic blocks, and only connect up those that are needed.
- Assume unused inputs do not influence output...

THEORETICAL PLD

Location of connection array varies by device!

GENERAL PLD STRUCTURE

PROGRAMMABLE LOGIC DEVICE (PLD)

Customization is accomplished by appropriate connections (or disconnections) between components.

One-time programmability:

- Disconnections caused by intentionally blowing fuses (bipolar)
- Connections created using anti-fuse technology (CMOS)

Repeated programmability (erasable):

- Erasable Programmable ROM (EPROM) Erased with UV light
- Electrically Erasable PROM (EEPROM) physically larger than EPROM
- Flash EPROM benefits of EEPROM, but smaller size
- Static random-access memory (SRAM) volatile (contents lost at power-down)

ERASABLE PROGRAMMABLE READ-ONLY MEMORY (EPROM)

Image: https://upload.wikimedia.org/wikipedia/commons/3/39/EPROM Intel C1702A.jpg

PROGRAMMABLE LOGIC DEVICE (PLD)

PLDs can be categorized by their complexity and architecture:

- SPLDs (Simple Programmable Logic Devices)
 - ROM (Read-Only Memory)
 - PLA (Programmable Logic Array)
 - PAL (Programmable Array Logic)
 - GAL (Generic Array Logic)
- Complex Programmable Logic Device (CPLD)
- Field Programmable Gate Array (FPGA)

SIMPLE PLDS

Differ in which gate arrays are configurable

Туре	AND Array	OR Array
ROM	Fixed	Programmed
PLA	Programmed	Programmed
PAL/GAL	Programmed	Fixed

READ-ONLY MEMORY (ROM) AS A LOGIC DEVICE

A 2N \times b ROM is a combinational circuit with N inputs and b

outputs

Two ways of interpreting the ROM:

- A place to store information, with each address holding a specific Boolean value.
- A combinational circuit generating a sum-of-products function with no minimization.

Does not require specialized hardware or software, but ROM is slow, expensive, and power inefficient. Cannot be used for sequential logic.

PROGRAMMABLE ARRAY LOGIC (PAL)

Field programmable devices implementing

sum-of-product logic functions

- Programmable AND plane
- Fixed OR plane

$$Z0 = X1 \cdot X3 + X0 \cdot X2$$

$$Z1 = \overline{X1} \cdot X2 \cdot X3$$

$$+\overline{X0} \cdot X1 \cdot \overline{X2} \cdot X3$$

$$+X0 \cdot X3$$

mican ductor

X3 X2 X1

PAL is a trade name of Lattice Semiconductor.

PROGRAMMABLE ARRAY LOGIC (PAL)

Image: https://en.wikipedia.org/wiki/File:AMD_PAL_22V10.jpg

PROGRAMMABLE ARRAY LOGIC (PAL)

Image: https://en.wikipedia.org/wiki/File:AMD_22V10_Macrocell.jpg

PROGRAMMABLE LOGIC ARRAY (PLA)

Add logic efficiency at the expense of internal complexity

- Both AND plane and OR plane are programmable
- More pins and more functions per chip...

$$Z0 = X1 \cdot X3 + X0 \cdot X2$$

$$Z1 = \overline{X1} \cdot X2 \cdot X3 + \overline{X0} \cdot X1 \cdot \overline{X2} \cdot X3 + X0 \cdot X3$$

$$Z2 = X1 \cdot X3 + \frac{1}{X1} \cdot X2 \cdot X3$$

Instead of hundreds of gates (as in SPLDs), complex PLDs contain thousands to tens of thousands of logic gates.

Combines programmable AND/OR arrays with "macrocells" that can perform combinatorial or sequential logic

- Many gate arrays and macrocells available inside a CPLD, with selectable functionality
- Makes efficient use of the the chip for lots of small equations
- Retains certain PLA functions, but with less complexity
- Logic usually formed using sum-of-products

Non-volatile memory; can function on system start-up Less expensive than FPGA, with more predictable propagation delays

Image: https://commons.wikimedia.org/wiki/File:Altera_MAX_7128_2500_gate_CPLD.jpg

Altera MAX 3000A Architecture

CPLDs are ideal for high-bandwidth applications where propagation delay must be minimized, or where non-volatile memory is needed. Such applications include:

- Fast combinational logic
- Counters
- Decoders
- "Glue" logic
- Bus protocol translation
- I/O decoding
- Sequencing of device power-up

PROGRAMMABLE LOGIC DEVICE (PLD)

ASIC (Application Specific IC)

- Highly integrated logic device that uses programmable internal interconnections to allow arbitrary (application specific) logic
- Can be made for high volume use
- Expensive! Non-recurring engineering (NRE) charge needs to be amortized

FPGA (Field Programmable Gate Array)

- Uses lookup tables (LUT) instead of logic gates
- Used in National Instruments cRIO
- Xilinx and Altera control over 80% of the FPGA market

FIELD PROGRAMMABLE GATE ARRAYS (FPGAs)

Image from: FPGAs!? Now What? By Dave Vendenbout, XESS Corporation Available at: http://www.xess.com/static/media/appnotes/FpgasNowWhatBook.pdf

FPGA ARCHITECTURE

I/O = Input/Output Block

SB = Switching Block

CLB = Control Logic Block

WHAT DOES A CONTROL LOGIC BLOCK DO?

- The control logic block (CLB) architecture varies by device family
- Each CLB takes between 3 and 10 binary inputs, and generates one or two outputs in accordance with a Boolean logic function specified by the user.
- Rather than rendering logic through physical gates (as is done with CPLDs), a FPGA's control logic is implemented using small look-up tables (built as RAM)
- In most FPGA devices, combinatorial outputs can be stored for later use.

FIELD PROGRAMMABLE GATE ARRAYS (FPGAs)

FPGAs are ideal for implementing complex code that requires memory and sequential logic. Applications include:

- Data signal processing
- Parallel process control
- Data encryption
- Pattern recognition
- Software-defined radio
- Medical imaging

FPGAs COMPARED TO CPLDs

FPGAs	CPLDs	
Based on look-up table (LUT), resulting in higher density.	Based on programmable AND array and fixed OR array.	
More expensive (> \$15)	Cheaper (> \$10)	
Volatile SRAM technology.	Non-volatile EEPROM technology.	
Up to 250,000 logic elements, suitable for more complex applications.	Up to 500 logic elements, often used for simpler logic applications.	
Programmed using either schematic entry or text entry.		

PLD PROGRAMMING TOOLS

CAD tools for designing digital systems should cover the following process phases:

- Description (logic specification)
- Design (logic synthesis) includes various optimization steps to reduce cost and improve performance while generating a "netlist"
- Simulation (logic verification) verify design with respect to its specification

PLD PROGRAMMING TOOLS

Image: http://saaubi.people.wm.edu/TeachingWebPages/Physics351 Fall2009/Week0/Physics351 Fall2009 ad.html

Approach 1: Develop schematic, compile, and program device.

PLD PROGRAMMING TOOLS 1 library ieee; 2 use ieee.std logic 1164.all;

```
2 use ieee.std logic_1164.all;
 3 use ieee.numeric std.all;
 5 entity signed adder is
 6 port
 8 aclr: in std logic;
 9 clk : in std logic;
10 a : in std logic vector;
11 b : in std logic vector;
12 q : out std logic vector
13 );
14 end signed adder;
16 architecture signed adder arch of signed adder is
17 signal q s : signed(a'high+1 downto 0); -- extra bit wide
19 begin -- architecture
20 assert (a'length >= b'length)
21 report "Port A must be the longer vector if different sizes!"
22 severity FAILURE;
23 q <= std logic vector(q s);</pre>
25 adding proc:
26 process (aclr, clk)
27 begin
28 if (aclr = '1') then
29     q_s <= (others => '0');
30     elsif rising_edge(clk) then
31         q_s <= ('0'&signed(a)) + ('0'&signed(b));
32     end if; -- clk'd</pre>
33 end process;
35 end signed adder arch;
```

Image:https://commons.wikimedia.org/wiki/File:Vhdl_signed_adder.png

Approach 2: Write code, compile, and program device.

PLD PROGRAMMING TOOLS

Hardware Description Languages (HDL)

- Similar to modern structured programming languages but supports computations that can occur in parallel.
- Works with both CPLDs and FPGAs

Open-standard HDLs

- VHDL (IEEE 1076)
- Verilog (IEEE 1364)

Proprietary HDLs

- AHDL (Altera HDL)
- ABEL (Advanced Boolean Expression Language, owned by Xilinx)
- CUPL

VHDL

Very High Speed Integrated Circuit HDL

- Contains two components:
- Entity Description defines the input/output connections (ports) to the hardware.
- Architectural Body describes the hardware behavior.

VERILOG

- Syntax similar to C programming language
- Uses hierarchy of modules to implement design

```
// andgate.v
module andgate(A, B, Y);
  input A, B;
  output Y;
  assign Y = A & B;
endmodule
```

SYSTEM ON A CHIP

FPGA technology allows users to embed entire digital signal processing (DSP) and microprocessors (uP) onto a single chip.

Faster, less expensive, and more reusable than application specific integrated circuits (ASICs)

COMING UP....

Computer Systems

- Sequential logic
- Finite state machines