FROM LAST TIME...

Computer Systems

= Why do Computer Systems matter/
= Boolean algebra
= Combinational logic

y =(B1-B2)+ (B1-B2)+ (B1-B2) + (B1-B2)

y =(B1+B2)-(B1+B2)-(B1+B2)-(B1+ B2)

Jeff Shelton — 23 January 2015

B1 | B2 L
0 0 0
0 1 0
1 0 1
1 1 0

UNIT 3:
COMBINATIONAL LOGIC

JJJJJJJJJJJJJJJJJJJJJJJJJ

DEVICE OPERATION CAN OFTEN BE
DEFINED IN A TRUTH TABLE

Thermal Rear Drive Drive
Sensor Sensor Motor Direction
OFF OFF OFF ON

FORWARD
OFF OFF ON ON FORWARD
OFF ON OFF ON REVERSE
OFF ON ON OFF DON'T CARE
ON OFF OFF OFF DON'T CARE
ON OFF ON OFF DON'T CARE
ON ON OFF OFF DON'T CARE
ON ON ON OFF DON'T CARE

Approaches:

1. Black Box (hand off problem to somebody else's software/compiler)
2. Brute Force (write software or build circuitry that checks all conditions)
3. Reduce Logic (write less complex software or circuitry)

Jeff Shelton — 23 January 2015

SUM-OF-PRODUCTS AND PRODUCT-OF-
SUMS MAY NOT MINIMIZE COMPLEXITY

y = (B1-B2) + (B1- B2)

B1|B2| L
O] 0| O
O 1] 0
1 1 S
I y = (B1+ B2) - (B1 + B2)

Might there be a way to reduce the
complexity in a systematic fashion?

Jeff Shelton — 23 January 2015 4

BOOLEAN LOGIC CAN BE
SIMPLIFIED IN SEVERAL WAYS

Why?

= Reduce number of gates and connections
" Limit propagation delays

= Make function logic more evident

How/?

= Boolean algebra (apply axioms and theorems)

= Karnaugh maps (graphical method)

= Quine-McCluskey method (deterministic algorithm)

Jeff Shelton — 23 January 2015

SIMPLIFICATION MAY BE INCLUDED
IN ADVANCED DIGITAL SYSTEMS

Modern synthesis code handles logic
simplification for programmable devices.
However, K-maps remain useful for
minimizing circuitry when designing and
building simple circuits.

Jeff Shelton — 23 January 2015 6

KARNAUGH MAPS PROVIDE A
SIMPLE MINIMIZATION TECHNIQUE

= Graphical minimization technique for
three to six variables

= Construct a table with adjacent boxes
using Gray code

= Adjacency is established along interior

and exterior boundaries

Lock B1 B2

00 01 ;11 10
00| O 1 1 1
01 | 1 1 | 1 0
B3 B4
11| O 0 0 0
10| O 0 1 1

Jeff Shelton — 23 January 2015

EXAMPLE:
GRAPHICAL MINIMIZATION

Example: A two button door lock

Jeff Shelton

A two button door lock with two possible unlock combinations:

B1|B2| L
0|0 O
O|1] 1
11]0] 0
111 1

Adjacent 1’s are collected
Keep only terms that don’t change for the final expression

B1

Lock o 4 y = (B1-B2) + (B1- B2)
g 0010 y = (B1 + B1) - B2
11| 1 y = B2

— 23 January 2015

HOW TO EXTEND GRAPHICAL
MINIMIZATION?

We want to add more variables...

= 3-variable map is three dimensional!
= Need to map 3-D maps to 2-D AND preserve adjacency

= Need a different way than the “natural” binary
counting order

Jeff Shelton — 23 January 2015 9

GRAY CODE IS A DIFFERENT
“COUNTING” SEQUENCE

000 000

0

1 001 001
2 010 011
3 011 010
4 100 110
5 101 111
6 110 101
7 111 100

Jeff Shelton — 23 January 2015

MULTI-BIT CHANGES MAY
CAUSE DATA PROBLEMS

= “Straight” binary counting - two transitions involve
changing of both bits:

00 » 01 - 10 - 11

Both bits
change

simultaneously

= Depends on which bit changes first, the intermediate
values will come from the following sequence:

01 - 00-10 or 01-11-10

= Alternative counting order:
00-01-11-10

Jeff Shelton — 23 January 2015 11

REFLECTED GRAY CODE
IS EASILY CREATED

Reflect and prefix method
= Reflect down
= Prefix top half with o
= Prefix bottom half with 1

n=1 n=>2 n=3
0 0 = 00 00 — 000

1 1 - 01 01 —» 001
1 > 11 11 — 011

0 » 10 10 —- 010

10 = 110

11 - 111

01 — 101

00 — 100

Jeff Shelton — 23 January 2015

REFLECTED GRAY CODE CAN BE
CONVERTED BACK TO BINARY CODE

= The bits of an n-bit binary or Gray-code code word are
numbered from right to left, from O ton—1

= Biti of a Gray-code word is 0 if bits i and i + 1 of the
corresponding binary code word are the same, else bit i
is 1. (When i + 1 = n, bit n of the binary code is
considered to be 0.)

Bﬁ%ng;l Binary Code Gray Code
0 000 000
1 001 001
2 010 011
3 011 010
4 100 110
5 101 111
6 110 101
7 111 100

Jeff Shelton — 23 January 2015 13

ASYNCHRONOUS INPUTS MAY
REQUIRE A HANDSHAKE PROTOCOL

[[I R A I S I N B

Clock_one

EEEEE

= Clocked 1/0 - All registers and memories are updated at
either the rising edge or the falling edge of the clock signal
and are ready to be read at the next transition of the clock
signal

= Handshake - Protocol used to “broadcast” when output
values are ready to be read

Jeff Shelton — 23 January 2015 14

NO SYNCHRONIZER IS NEEDED
WITH REFLECTED GRAY CODE

00-01-11-10

= |nput must go through all intermediate values to get
from one value to another

= Reading at any time will give valid result

= |f value is changing, result will be either the old or the
new value; never a spurious value

Jeff Shelton — 23 January 2015 15

KARNAUGH MAPS PROVIDE A
SIMPLE MINIMIZATION TECHNIQUE

= Graphical minimization technique for
three to six variables

= Construct a table with adjacent boxes
using Gray code

= Adjacency is established along interior

and exterior boundaries

B1 B2
Lock
00 01 11 10

@ 111

1
1 (0
0[O
1 (1

0
1 |1
11/ 0 | O
010

Jeff Shelton — 23 January 2015 16

K-MAPPING REDUCES ADJACENT
PAIRS OF PAIRS Truth Table

5162 53 L

0 0O o] o0
K-Map 0O 0 1] 0
B1 B2

0 1 o0 1

Lock 90 01 11 10 T
0 0 [1 1\ 0

B3 1 0 O01] o0
1 0 \1 1] 0

1 0 1] 0

1 1 o0 1

1 1 1] 1

= Both B1 and B3 change values while B2 remains fixed
= The result of the minimization is L = B2

Jeff Shelton — 23 January 2015

17

KARNAUGH MAPS ARE EASILY
EXTENDED TO 4 VARIABLES

B1 B2

bock 00 o1 11 10

o 00| O 1 1 1

L= + (B1- B4) o [[1 [l1]] 1/] 0
B3 B4

+ (B1- B3 - B4) 111 0 [0] 0|0

10| O 0 1 1

= (Can be extended to 6 variables using multiple tables.

= Beyond 6 variables, other minimization methods must be
used.

Jeff Shelton — 23 January 2015 18

IMPOSSIBLE INPUT CONDITIONS
CALLED “DON’T CARES”

“Don’t Care” conditions can be used for:

= Error Checking

- lllegal or impossible input conditions can generate additional
outputs to signal potential malfunction

= (Circuit Minimization

- Cells corresponding to don’t care inputs can be set to either 1 or o
in such a way that the size of the design grouping is increased

Jeff Shelton — 23 January 2015 19

WITHOUT A DON’T CARE STATE,
MINIMIZATION IS LIMITED

B1 B2
bock 00 o1 11 10
R o 00| O 1 1 1
B3 B4 =
+ (B1- B3 - B4) 111 0 [0] 0|0
10 O 0 1 1

Jeff Shelton — 23 January 2015

ADDITIONAL MINIMIZATION IS
POSSIBLE WITH “DON’T CARE”

Lock B1 B2

00 O

00

1
AL
1 Z

L =(B2-B3) + (B1-B4) ol

B3 B4

+ (B1- B3) 11

ol of~| X

o
o -
| O Ol

10

Jeff Shelton — 23 January 2015

21

EXAMPLE: THREE Truth Table
BUTTON DOOR LOCK CIEICITS

0 0
Recall x - yv+x-yv=x-(y+7Vy)=x 0O 0 1] 1
0 1 0 1
K-Map 0 1 1 0
B1 B2 1 0 0 0
Lock
00 01 11 10 1 0 1 1
B3 O_ 0 - |1 0 1 1 0| 1
1 [a]] o f(a [l 11 1

y = (B1: B2 -B3)+(B1: B2 - B3) +%F(31.32.33). |

ik +(B1- B2 - B3)
y= (B2-B3) +(B1-B3) + (B2-B3)

Jeff Shelton — 23 January 2015

22

EXAMPLE: ROBOT OPERATION

Thermal Rear Drive Drive
Sensor Sensor Motor Direction
OFF OFF OFF ON

FORWARD
OFF OFF ON ON FORWARD
OFF ON OFF ON REVERSE
OFF ON ON OFF DON'T CARE
ON OFF OFF OFF DON'T CARE
ON OFF ON OFF DON'T CARE
ON ON OFF OFF DON'T CARE
ON ON ON OFF DON'T CARE
ON=1,0FF=0
FORWARD =1, REVERSE=0
DON'T CARE =X

When drive motor is off, the drive direction is irrelevant!

Jeff Shelton — 23 January 2015 23

EXAMPLE: ROBOT OPERATION
15 | F | _RS___DvM_| DD __

0 0 0 1 1
0 0 1 1 1
0 1 0 1 0
0 1 1 0 X
1 0 0 0 X
1 0 1 0 X
1 1 0 0 X
1 1 1 0 X
ON =1, OFF =0

FORWARD =1, REVERSE=0
DON'T CARE =X

Jeff Shelton — 23 January 2015

DM FS RS
00 01 11 10
o[z 2] o |2
TS
1l oo of o
DM = + (TS - FS)
DD FS RS
00 01 11 10
ol 1] o x |[x |
TS
1| 1] x| x [Ix]

Jeff Shelton — 23 Janua

ry 2015

EXAMPLE: ROBOT OPERATION

nmm

_ = = = O O O O

m B, O O +» KLk O

b O — O +» O +—» O

©O O O O O r»r +~»r -

X X X X X O +r B

25

NON-REDUCIBLE MAPS CAN

SOMETIMES BE SIMPLIFIED

= Door Lock example (alternate combination)

Lock

0
1

B2

= Diagonal patterns indicate an XOR relationship:

Jeff Shelton — 23 January 2015

0

1
1

1

0

L= (B1-B2)+ (B1-B2)

L = B1&® B2

26

PHYSICAL REALIZATION OF
COMBINATIONAL LOGIC

Jeff Shelton —

Because of digital quantization, relatively
easy to implement combinational logic

Circuits are “almost exact” representations
of the mathematics (Boolean algebra)

23 January 2015 27

PSEUDO CIRCUITS ARE A FIRST
STEP INTO CIRCUIT DESIGN

= Convert Boolean equations into logic block diagrams
= Very close to actual circuit elements

= Standard symbols: :} ::}

AND) NAND
> T >
OR NOR

NAND gate is NOT(AND): NAND = (x -y - ...)
NOR gate is NOT(OR): NOR=(x+y+-)

NAND and NOR are the most common gates (as a result of how
semiconductor logic gates are constructed with transistors)

Jeff Shelton — 23 January 2015

28

PSEUDO CIRCUITS PRESENT
BOOLEAN LOGIC AS A SCHEMATIC

Door lock example:
= Boolean Equation: L =B1-B2= (B1+B2)

. . B1 B2
= Pseudo Circuit: o o
L L -
* {>= D—O
]]
B1 B2
§ §
= Convert to NAND/NOR form: MM L

Jeff Shelton — 23 January 2015 29

REAL DEVICES HAVE
PROPAGATION DELAYS

tpHL tpLH

= Propagation delay has minimal impact for combinational
(Boolean) logic circuits

= Propagation delay is very important when the
combinational logic becomes the part of a sequential
logic system

Jeff Shelton — 23 January 2015 30

GLITCHES ARE SPURIOUS SIGNALS
GENERATED AS INPUTS CHANGE

Example:
Lock B1B2
00 01 11 10
—
L= (B1-B3-B4) 0| 0 Jf1]1]fo
+(B2 - B3) B3 B4 L 1J 0
1m0 |0 |l]| 1)

Jeff Shelton — 23 January 2015 31

GLITCHES ARE SPURIOUS SIGNALS
GENERATED AS INPUTS CHANGE

Example:
Lock Bl B2
00 01 11 10
[- 00| O |1 1| 0
o 01 | 1 ll 1J 0
+(B2 - B3) B3 B4
111 0 0 |1 1|
. B1
A ||>= L — EI*I'EI'E'EM B2
B2 —y B3 |
| B4
B3 o DL SN /B1e /B3e B4
T - — = B2e/B3
B4 -, EI1EI'3EI4 Ble B3 e B4 |
. . - Lock L

Jeff Shelton — 23 January 2015 32

GLITCHES ARE SPURIOUS SIGNALS
GENERATED AS INPUTS CHANGE

Example:
Lock B1 B2
00 01 11 10
[- oo| 0|1 |1]]|O0
- 01 | 1 ll 1J 0
+(B2 - B3) B3 B4
11 0 0 |1 1)
. B1
® L B1'B3' B4 B2
B2 Il>= j * B3~ |
| B4
B3 —, 5233 . Lu:'k /Ble /B3e B4
T - — i‘ B2+/B3
B4 -, EI1EI'3EI4 Ble B3 e B4 |
. o — Lock L

Jeff Shelton — 23 January 2015 33

GLITCHES ARE SPURIOUS SIGNALS
GENERATED AS INPUTS CHANGE

Example:
Lock B1B2
00 01 11 10
L 00| 0|1] 1] o0
o 01 || 1 ll 1J 0
+(B2 - B3) B3 B4
111 0 0 |[1 1)
B1
. P ||>= B1'B3'B4 B2
- | B3~ 1
B4
B3 o D SN /Ble /B3e B4
D“ — = B2e/B3
- — 919554 Ble B3 e B4 |
. . - Lock L

Jeff Shelton — 23 January 2015 34

GLITCHES ARE SPURIOUS SIGNALS
GENERATED AS INPUTS CHANGE

Example:
Lock B1B2
00 01 11 10
L 00| 0|1] 1] o0
o 01 || 1 ll 1J 0
+(B2 - B3) B3 B4
111 0 0 |[1 1)
B1
. P ||>= B1'B3'B4 B2
- | B3~ 1
| B4
B3 o DL SN /B1e /B3e B4
T - — - B2e/B3 .
B4 —\B Ble B3 e B4 l
. . - Lock L

Jeff Shelton — 23 January 2015 35

GLITCHES ARE SPURIOUS SIGNALS
GENERATED AS INPUTS CHANGE

Example:
Lock Bl B2
00 01 11 10
[- 00| O |1 1| 0
o 01 | 1 ll 1J 0
+(B2 - B3) B3 B4
111 0 0 |1 1|
. B1
A ||>= L B1'B3'B4 B2
- e B3~ |
| B4
B3 o T SN /B1e /B3e B4
T - — = B2¢/B3
B4 — EI1EI.3EI4 Ble B3 e B4 1
. . - Lock |

Jeff Shelton — 23 January 2015 36

HAZARDS (GLITCHES)

If device connected to output is static (its output depends
only on the current value of the input), an input glitch will
show up as an output glitch

= May not cause series problem, since glitches
are usually very short.

= Low pass filtering devices (e.g., motors...)
will filter out the glitches.

= Usually will not cause problem...

Jeff Shelton — 23 January 2015

37

HAZARDS (GLITCHES)

If device connected to the output is dynamic (sequential), it
may respond to the momentary change, if the change is long
enough to switch one of its inputs

= A counter might respond to the glitch and increment its count

Remedy - “De-minimize” the circuit in a controlled manner, by
introducing additional terms to cover the transition

= All transitions between adjacent boxes should take place under
a common term - there is always one term that does not change
during the transition

Jeff Shelton — 23 January 2015 38

DEMINIMIZE THE PRIOR EXAMPLE

Previous example:

L= (B1-B3-B4)
+(B2 - B3)
+(B1- B3 - B4)
+(B1- B2 - B4)

& ._Dc B1'B3'B4
—
_—

BZ

B3

B2 B3

B1B3B4
on|

Jeff Shelton — 23 Ja

nuary 2015

00

01
B3 B4
11

10

B1
B2
B3
B4

B1’e B3’e B4

B2eB3"

Ble B3 e B4
Ble B2 ¢ B4
Lock

Bl B2
00 01 11 10
0|1] 1) 0
w 1l o
0 | o [l 1)
0|00 O

39

COMING UP...

= |mplementing combinational logic
= Sequential logic
= Finite State Machines (FSM)

Jeff Shelton — 23 January 2015

40

