FROM LAST TIME...

Electronic Systems

- Semiconductor materials
- Forward and reverse biasing
- Diode characteristics
- Diode applications

UNIT 2: ELECTRONIC SYSTEMS

ACTIVE ELECTRONICS (TRANSISTORS)

RECALL THAT A DIODE IS A P-N JUNCTION

A SECOND p- OR n-TYPE REGION CREATES WHAT TYPE OF DEVICE?

TRANSISTORS PERFORM SIGNAL AMPLIFICATION AND SWITCHING

- Amplification magnify a signal (voltage/current)
 by transferring energy from an external source
- Switching controlling a relative large current between or voltage across two terminals using a small control current or voltage

TWO MAJOR TYPES OF TRANSISTORS

Bipolar Junction Transistor (BJT)

Field Effect Transistor (FET)

Current controlled

Voltage controlled

BJT CAN BE VIEWED AS A CURRENT-CONTROLLED CURRENT SOURCE

$$lpha_{
m dc} = rac{i_C}{i_E}$$
 $eta_{
m dc} = rac{i_C}{i_B}$

(usually > 0.98) (usually 50 to 300)

BJT CAN BE VIEWED AS A CURRENT-CONTROLLED CURRENT SOURCE

$$i_E = i_C + i_B$$

$$\frac{i_E}{i_C} = 1 + \frac{i_B}{i_C}$$

$$\frac{1}{\alpha_{\rm dc}} = 1 + \frac{1}{\beta_{\rm dc}}$$

$$\beta_{\rm dc} = \frac{\alpha_{\rm dc}}{1 - \alpha_{\rm dc}} \quad \leftrightarrow \quad \alpha_{\rm dc} = \frac{\beta_{\rm dc}}{\beta_{\rm dc} + 1}$$

BJT OPERATES IN THREE MODES

• Cutoff – Open Switch (no collector current) $i_C \approx 0$, $R_{CE} \approx \infty$

IN ACTIVE LINEAR REGION, BJT AMPLIFIES BASE CURRENT

Active Linear - Current Amplification

$$i_C = i_B \beta;$$
 $V_{BE} = V_F;$ $V_{CE} > V_F$

- i_C proportional to i_B
- Current amplification factor β (20 ~ 200) often denoted as h, hf, or h_{FE} in datasheets. i_{c}
- Power dissipated: $P = i_C \cdot V_{CE}$

IN CUTOFF AND SATURATION REGIONS, BJT ACTS AS A SWITCH

Cutoff - Open Switch (no collector current)

$$i_B = 0$$
; $i_C \approx 0$; $V_{BE} < V_F$; $V_{CE} \ge 0$

Voltage V_{CE} can be viewed as an open switch

Saturation – Closed Switch (max. collector current)

$$i_B > \frac{i_C}{\beta}; \quad V_{BE} = V_F;$$
 $V_{CE} = V_{SAT} \approx 0.2 V$

- i_C is controlled by the collector circuit
- Voltage V_{CE} can be viewed as an open switch

BASE CURRENT CAN TOGGLE BJT SWITCH

- Point A $[i_B \approx 0 \text{ or small } V_{IN} (< 0.6 \text{ V})]$
 - transistor is cutoff
 - $-i_C \approx i_E \approx 0 \Rightarrow V_{OUT} \approx V_{CC}$
 - Switch open!
- Point B $[i_B > i_{B(sat)}$ or large V_{IN} (> 0.7 V)]
 - transistor is **saturated**.
 - $-V_{OUT} = V_{CE_{(sat)}} \approx 0.2 V \text{ (very small !)}$
 - Switch closed!

$$i_B = \frac{V_{IN} - V_{BE(SAT)}}{R_B}; \quad i_C \approx \frac{V_{CC} - V_{CE(SAT)}}{R_L}$$

BASE CURRENT CAN TOGGLE BJT SWITCH

Suggested design rule:

Choose circuit values such that, when V_{in} goes high,

$$i_B > \frac{i_{C(\text{limit})}}{10}$$

Since $\beta_{dc} > 20$ in most cases, this should force the transistor into hard saturation.

BJT SWITCHING IS NOT INSTANTANEOUS

- t_D (Delay time)
 Time transistor remains off after input current is applied
- t_R (Rise time) Time required for i_C to reach 90% of its final value
- t_S (Storage time) Time i_C remains close to the maximum value after input current is removed
- t_F (Fall time) Time required for i_C to fall to below 10% of its final value

BJT SWITCHING IS NOT INSTANTANEOUS

Turn-ON and Turn-OFF Time

- turn-ON time $t_{ON} = t_D + t_R$
- turn-OFF time $t_{OFF} = t_S + t_F$

Typical values for 2N3904 transistor:

- t_d = 35 nsec
- $t_r = 35 \text{ nsec}$
- t_S = 200 nsec
- $t_f = 50 \text{ nsec}$

turn-ON time = 70 nsec turn-OFF time = 250 nsec

LED Driver

Select R_B to protect logic control circuit

- Assume TTL signal at V_{IN}
 - 5 V = HIGH
 - o V = LOW
- Digital output can supply 40 mA when V_{IN} is HIGH

LED Driver

$$R_B > \frac{V_{IN} - V_F}{I_{DO,max}} = \frac{4.3 \text{ V}}{40 \text{ mA}} = 107.5 \Omega \approx 110 \Omega$$

To avoid overloading digital output, might actually double or quadruple $R_{\rm B}!$

LED Driver

Select R_C to protect LED

- Assume $V_{CC} = 5V$
- Assume LED has forward bias of 2V and maximum power dissipation of 80 mW

LED Driver

$$i_{C(\text{max})} = \frac{P_{\text{max}}}{V_{LED}} = \frac{80 \text{ mW}}{2 \text{ V}} = 40 \text{ mA}$$

$$R_C > \frac{V_{CC} - V_{LED} - V_{CE(sat)}}{i_{C(\text{max})}} = \frac{(5 - 2 - 0.2)\text{V}}{40 \text{ mA}} = 70 \text{ }\Omega$$

To maintain hard saturation, $i_B > 4 \text{ mA} \Longrightarrow R_B < 1075 \Omega$

LED Driver

Shortcoming: Switch circuit works well as long as V_{CC} is sufficiently high. But variations in LED voltage drop or β could affect brightness when supply voltage is small.

BJT AS CURRENT SOURCE

Maintain LED brightness by regulating collector current. Eliminate resistor R_B from BJT switch circuit, then add resistor R_E . Enforce desired current flow by intelligent choice of R_E . Transistor operation is in the active region.

A DARLINGTON PAIR JOINS TWO BJT TRANSISTORS

- Composite current gain is the product of the two stages
- β can sometime exceeds 10,000
- Most often found in power electronics that are designed to drive large current load
- Smaller than two individual transistors because the collector is shared

npn Darlington

INCOMING LIGHT CAUSES A PHOTOTRANSISTOR TO SWITCH

 Special class of transistor whose junction between the base and emitter allows it to act as a photodiode.

Slower than a photodiode, but with the gain of a transistor

transistor.

A PHOTO-INTERRUPTER ACTS AS AN OPTICAL SWITCH

 LED + phototransistor pair can be used to detect the presence of an object that may partially or completely interrupt the light between the LED and phototransistor

AN OPTO-ISOLATOR PROVIDES CIRCUIT SEPARATION

LED + Phototransistor pair.

Image: www.sparkfun.com/products/314

ELECTRO-MECHANICAL RELAY SWITCHES

Images:

http://www.automationdirect.com/adc/Overview/Catalog/Relays_-z-_Timers/Electro-Mechanical_Relays http://slab.concordia.ca/2009/arduino/relays/http://paramountindt.tradeindia.com/electromechanical-relay-542067.html

ELECTRO-MECHANICAL RELAYS CAN ISOLATE ELECTRICAL CIRCUITS

SPST

ELECTRO-MECHANICAL RELAY SWITCH

Pros:

- Inexpensive
- Large selection
- When properly sized, can handle high currents and voltages
- Resistant to electrical surges

Cons:

- Bulky
- Prone to "sticking" or mechanical fatigue
- Slow (5 to 15 msec) switching time
- Limited cycle rate
- Substantial current needed to pull in relay

RELAY LOGIC

Images:

http://www.jach.hawaii.edu/ets/mech/JCMT/carousel/rcds_11.jpg http://makezine.com/2013/02/10/prison-door-system-built-using-only-timers-and-relays/

SOLID-STATE RELAYS ALSO PROVIDE SWITCHING CAPABILITIES

- May switch AC or DC
- May use optical coupling

Jeff Shelton - 22 January 2015

FIELD-EFFECT TRANSISTORS (FET) ARE USUALLY EITHER JFET OR MOSFET

JFET = Junction FET

MOSFET = Metal-Oxide-Semiconductor FET

A JFET USES A p-n JUNCTION AS THE GATE CONNECTION

- Reverse biasing the gate voltage reduces the drain current
- Positive gate voltage is never applied (as it would initiate gate current)

FETS HAVE TWO MODES OF OPERATION

- Depletion Mode: current flow is restricted by narrowing the channel available for current flow.
- Enhancement Mode: current channel is widened to increase current flow.

Jeff Shelton – 22 January 2015

A MOSFET IS A GOOD POWER DEVICE, AS GATE CURRENT IS LOW

- Devices available that can operate in either enhancement mode (gate-source voltage forward biased) or depletion mode (gate-source voltage reversebiased)
- Very high input impedance at the gate – good for digital applications

Enhancement mode n-channel MOSFET

THRESHOLD VOLTAGE DEFINES MOSFET OPERATION

- Threshold voltage (V_T) is the voltage between gate and substrate when n-channel begins to form
- Allows drain-to-source conduction
- Threshold voltage may also be denoted as $V_{GS(on)}$ and is typically between 1 and 5 V.

Jeff Shelton – 22 January 2015

MOSFETS (ENHANCEMENT-MODE) HAVE FOUR OPERATING REGIONS

- Cutoff state Transistor is turned OFF $V_{GS} < V_T \implies i_D \approx 0$; $V_{DS} \approx V_{DD}$
- Ohmic state Linear (or triode) region $(V_{GS} > V_T \& V_{DS} < V_{GS} V_T \ll V_{DD}) \Rightarrow i_D \approx V_{DD}/R_D$;
 - i_D controlled by drain circuit
 - Connection from D to S acts as a small voltage-controlled resistor
- Constant current Active region $(V_{GS} > V_T \& V_{DS} > V_{GS} V_T) \Longrightarrow i_D \propto (V_{GS} V_T)^2$
 - i_D controlled by gate-source voltage
 - Power dissipated: $P = i_D \cdot V_{DS}$
- Breakdown Transistor will get VERY HOT!

GATE VOLTAGE CAN TOGGLE MOSFET SWITCH

- Point A ($V_{IN} < V_T$)
 - transistor is cutoff
 - $i_D \approx i_S \approx 0 \Longrightarrow V_{OUT} \approx V_{DD}$
 - Switch open!
- Point B ($V_{IN} > V_T$)
 - transistor is in Ohmic region
 - $V_{OUT} = V_{DD} V_{DS} = V_{DD} i_D(V_{G_1}) \cdot R_D$
 - Switch closed!

The MOSFET transistor can be viewed as a gate voltage controlled switch or it can also be viewed as an inverter!

EXAMPLE: CMOS INVERTER

Complementary Metal-Oxide Semiconductor (CMOS)

38

Jeff Shelton – 22 January 2015

BJT VS. MOSFET (SWITCHING)

Both can be used as current amplifiers:

- BJT: collector current (i_C) proportional (linear) to base current (i_B) .
- MOSFET: drain current (i_D) proportional to square of gate voltage (V_G) .

Both can be used as three terminal switches or voltage inverters:

- BJT switches gave rise to TTL logic.
- MOSFET switches gave rise to CMOS logic.

Jeff Shelton – 22 January 2015

39

BJT VS. MOSFET (SWITCHING)

- BJTs usually have larger current capacity than similar sized MOSFETs.
- BJTs have slower switching rates.
- BJTs less susceptible to static voltage spikes.
- MOSFETs have much higher input impedance and are normally off, which translates to less operating power drain.
- MOSFETs more easily fabricated into integrated circuit form.
- MOSFETs less prone to thermal runaway.

COMING UP...

Electronic Systems

- Interfacing electronic systems
- Operational amplifiers (op-amps)

Computer Systems

- Why do Computer Systems matter?
- Combinational logic
- Sequential logic
- Finite state machines