
Laplace and z-Transforms

Modified from Table 2-1 in Ogata, Discrete-Time Systems

The sampling interval is ∆ seconds. In the table below all signals are assumed to be 0 for t < 0 seconds,
whereas in ME 579 we do have signals that are two sided and define: X(z) =

∑+∞
n=−∞ xnz

−n. When we
have a signal that is non-zero for negative time, we can split the signal into a positive time component,
pn, and a negative time component, qn, and you can show that X(z) = P (z) +Q(z−1). When you do
this, you need to be careful with how you deal with the t = 0, n = 0 point and take into account any
delays.

Laplace
Transform X(s)

Continuous
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1

s2
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2
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Continuing the table, and reminding ourselves that these time functions are all defined to be zero for
t = n∆ < 0 seconds.

Laplace
Transform X(s)

Continuous
Signal x(t)

Sampled Signal
x(n∆) ≡ xn

z-Transform X(z)
Region of

Convergence

1

(s+ a)2
te−at ∆ne−a∆n ∆e−a∆z−1

(1− e−a∆z−1)2
|z| > e−a∆

s

(s+ a)2
(1− at)e−at (1− a∆n)e−a∆n 1− (1 + a∆)e−a∆z−1

(1− e−a∆z−1)2
|z| > e−a∆

ω

(s+ a)2 + ω2
e−atsin(ωt) e−a∆nsin(ω∆n) e−a∆z−1sin(ω∆)

1− 2e−a∆cos(ω∆)z−1 + z−2
|z| > e−a∆

(s+ a)

(s+ a)2 + ω2
e−atcos(ωt) e−a∆ncos(ω∆n) 1− e−a∆z−1cos(ω∆)
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|z| > e−a∆

- - bn
1

(1− bz−1)
|z| > |b|

- - b(n−q), n ≥ q;
0, n < q

z−q

(1− bz−1)
|z| > |b|

- - nbn−1 z−1

(1− bz−1)2
|z| > |b|
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(1− bz−1)3
|z| > |b|
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