Laplace and z-Transforms

Modified from Table 2-1 in Ogata, Discrete-Time Systems

The sampling interval is A seconds. In the table below all signals are assumed to be 0 for ¢t < 0 seconds,

whereas in ME 579 we do have signals that are two sided and define: X (z) =

— \too

n=—oo

T,2" ™. When we

have a signal that is non-zero for negative time, we can split the signal into a positive time component,
Pn, and a negative time component, g,, and you can show that X (z) = P(2) 4+ Q(z~!). When you do
this, you need to be careful with how you deal with the ¢ = 0,n = 0 point and take into account any

delays.
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Table of Laplace and z-Transforms 2

Continuing the table, and reminding ourselves that these time functions are all defined to be zero for
t =nA < 0 seconds.
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