
Brief Notes on Digital Filters 
Z-transforms 
 
 
For us the xn are usually samples from a signal. 
Remember that terms in the series must approach zero as n tends to 
± ∞.  This defines the region of convergence. 
 
Most often we use Geometric Progression formulae to do  
the sums which can then be expressed as: 
 
 
 Finite number of terms: sum =  
 
 Infinite number of terms: sum = 
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Z-transforms - Continued 

Regions of convergence in the z-plane 
 
Of the form |z| > some value      
(defines a region outside a circle)  
when the signal is zero for -∞ < n < n0  
and then has values  for n0 +1 < n < + ∞ 
 
 
Of the form |z| < some value      
(defines a region inside a circle)  
when the signal has values for -∞ < n < n0  
and then is zero  for n0 +1 < n < + ∞ 
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Inverse z-Transforms X(z) to xn 

Definition: 
 
 
Contour of integration inside region of convergence 
Residues only at poles inside contour of integration 
SIMPLE POLE at z = zo, residue is:   
 
 
M POLES at z = zo, residue is: 
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Inverse z-Transfroms X(z) to xn 
Other methods: 
1.  Express as known z-transforms, through partial fraction 

expansions. 
2.  Long division 
_______________________________________________________ 
 
In both cases, use the region of convergence to tell you whether you 
want to land up with a signal decaying away to zero for:  
positive time, xn = 0 for n < no 
negative time,  yn = for n > no 
or both, split into two parts a positive and a negative time part. 



Digital Systems (IIR Filters) 
 

 
 
Often H(z) is in a polynomial form: 
 
 
 
This is an infinite impulse response (IIR) filter. 
 
Difference Equation: [recall Z{xn-q } =  z -q X(z) ] 
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Digital Systems (FIR Filters) 

Some digital systems have transfer functions [H(z)] like: 
 
 
 
This is a Finite Impulse Response (FIR) Filter. 
Difference equation is: 
 
 
 
Note that this 2M+1 length filter is non-causal, and yn 
depends on future as well as past values of xn. 
 

H( z )= b−M z
+M +b−M+1z
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yn = b−M xn+M +b−M+1xn+M−1+ ....... b−1xn+1+boxn +
b1xn−1+b2xn−2 + ....... bM xn−M



Digital Systems (FIR Filters) continued 

Coefficients give the impulse response of these FIR filters: 
  hn = bn     for   –M ≤ n ≤ +M;     hn = 0  for  |n| > M. 
 
Note that the response is a convolution of xn with the 
impulse response hn = bn: 
 
 
 
Fastest way to implement this, unless M is very small, is 
through convolution via FFTs, not forgetting to zero pad 
appropriately. 
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Non Causal IIR Digital Filters 

You can have non-causal IIR filters too, 
(response now is a function of future values of the response as well 
as current and future values of the input)  
but they are tricky to implement. 
 
We split the transfer function into causal and acausal parts:   
H(z) = Hc(z) . Hac(z) where: 
 
 Hc( z )=

bo +b1z
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Non Causal IIR Digital Filters (cont) 

Hc(z) is implemented in the usual way  
(see difference equation on slide 5) 
The output of this becomes the input to Hac(z)  
Hac(z)  is implemented by using: 
 
 
 
To implement this you start at the end of the input series and work 
back towards the start. This is equivalent to: 

yn = coxn + c1xn+1+ c2xn+2 + ....... cNCxn+NC
− d1yn+1− d2yn+2 − ....... dNAyn+ND
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Frequency Response of Digital Filters 
Evaluate H(z) around the unit circle 
 
 
 
and f=k.fs/N, k=0,1,….N-1. 
This can be time-consuming. Note: you are actually doing: 
 

 
 
and hence this can be done efficiently in MATLAB by using:               

        H_freq_resp=fft{b,N}./fft{a,N} 
 
Make N very large (and a power of 2 for efficiency) to get a finely 
resolved spectrum. 
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Digital Filter Design 

All digital systems are filters but we usually we design 
filters to: 

–  remove noise from a signal 
–  differentiate or integrate a signal 
–  calculate the Hilbert transform of a filter 

 

We also sometimes design filters 
–  to simulate physical systems 
–  to act as controllers (not in this class) 

 



FIR Filter Design (Brief Overview) 

Method 1: (Sample in time) N = 2M+1 point filter
–  Start with H(f), the desired frequency response of an analog filter 

E.g. High-pass:  
H(f) = 1 for | f | > fc, and H(f) = 0 for  | f | < fc 
This is a severe change at | f |=fc, which is not really a good idea,  
having a gentler transition is desirable. 
 

–  Band limit putting H(f) = 0 for | f | > fs/2. 
–  Inverse Fourier Transform (analytically) to obtain h(t). 
–  Sample and scale to obtain expressions for Δh(nΔ). 
–  Window to have finite sequence –M ≤ n ≤ M and evaluate to 

obtain coefficients:       bj  for j = -M,-M+1,….-1,0,1,……M. 
A window that à zero smoothly at ±M is desirable. 
 



FIR Filter Design (continued) 

Method 2: (Sample in frequency) N point filter
–  Start with H(f) the desired frequency response for 0<f<fs/2. 

Beware of sharp transitions as with method 1. 
–  Sample H(f ) at f=k.fs/N   k=0,1,….N/2 to get  

Bf(k) for k=1,2,…(N/2)+1 
–  Specify Bf(k+N/2+1) =  

         complex conjugate of Bf(N/2+1-k) for k=1,2,…(N/2)-1.  
(Symmetry condition for real filter coefficients). 

–  Inverse Discrete Fourier Transform (IFFT) to get coefficients. 
–  Rearrange, if you didn’t do the phase adjustment in frequency, 

to move the last N/2 points of the filter to the start of the filter. 
Now the coefficients in the vector correspond to times:  
-(N/2) Δ  ≤  t  ≤ ( (N/2)-1 ) Δ instead of 0 ≤ t  ≤ (N-1) Δ. 

 



FIR Filter Design (continued) 

Method 3 (Remez Exchange/McCellan Parks Algorithm)  
N=2M+1 point FIR filter. 
–  This is a nonlinear optimization algorithm that tries to ensure the frequency 

response error is uniform. (Doesn’t always converge.) 
–  You specify a frequency and an amplitude vector that specifies the desired 

frequency response from 0 to fs/2. 
 
Example: Band-stop filter. F=[0 0.3 0.35 0.65 0.7 1.0]; A=[1 1 0 0 1 1]. 

 

–  Can weight the importance of error in each band. E.g., w=[0.9 0.1 0.9] 
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FIR Filter Design-Validation 
Always check out the frequency response of designed FIR filter by 
zero-padding hn  to about 8 times its length and taking the DFT (fft 
in Matlab is fast if zero padded length is a power of 2.)  
 
Remember the DFT always assumes that the data starts at t=0. You 
have to adjust the phase yourself to account for time-delays or 
advances. 
 
The impulse response should à zero at the filter ends.  
It not doing so indicates there are problems with the design.  You 
will see large ripples in the frequency response when this happens. 
Rectify by: 

–  Increasing the length of the filter  
–  Smoothing transition regions in the frequency domain 
–  Windowing the impulse response with a smoother window 



Differentiators etc. 
Differentiator:  H(f) = j 2 π f 
Amplifies high frequency noise.  
Digital filter will have a sharp transition at fs/2. 
Often a good idea to combine this with a low-pass filter…… also to 
smooth function at fs/2. 
Integrator: H(f) = 1/{j 2 π f} 
Amplifies low frequency noise.  
Digital filter will have a sharp transition at 0 Hz. 
Often a good idea to combine this with a high-pass filter…… also to 
smooth function at 0. 
Hilbert Transformer: H(f) = -j sign(f). 
Digital filter has sharp transition regions at f=0 & fs/2. 
Good idea to smooth function in these regions. 



IIR Filter Design 

Analog Design Mapped into Digital Design 
–  Impulse invariant mapping 

H(s) à h(t) à Δh(nΔ) à H(z) 
•  aliasing an issue, therefore not a good idea for design of, e.g., high-pass 

filters. 
•  Stable in s-plane (poles in LHP) à  

stable in z-plane (poles inside unit circle) 
 

–  Bilinear mapping  
Use H(s) and substitute every s with this function of z. 

•  Frequency distortion, must pre-warp frequencies (digital design à 
analog design frequencies) to account for this in the design. 

 
 
•  Stability conserved, entire left half plane maps into unit circle. 

s = ( 2 / Δ ).(1− z−1 ) / (1+ z−1 )

ωanalog = ( 2 / Δ ).tan(ωdigital.Δ / 2 )



IIR Filter Design (continued) 
We only looked at an  
analog Butterworth  
low-pass filter 
 
Poles equispaced around a circle in the s-plane. 
Radial positions of poles: |sk| = ωc  
Angular positions of H(s) poles in Left Half Plane (LHP) are:  
 
 
LHP poles correspond to H(s), RHP poles correspond to H(-s). 
 
E.g., N=3,  
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IIR Filter Design (continued) 

Finding N and ωc  
Specify desired digital characteristics 

–  at ωdigital-1  20 log10 |Hdigital| = -K1 dB 
–  at ωdigital-2  20 log10 |Hdigital| = -K2 dB 

 
Transform digital design to analog design (pre-warp) 
–  ωanalog-1 = (2/Δ) tan (ωdigital-1 Δ/2) 
–  ωanalog-2 = (2/Δ) tan (ωdigital-2 Δ/2) 

–  at ωanalog-1  10 log10 |Hanalog|2 = -K1 dB  (**) 
–  at ωanalog-2  10 log10 |Hanalog|2 = -K2 dB  (***) 



IIR Filter Design (continued) 
Use (**) and (***) to solve for N and ωc  
Round up N to make it integer. 
Write down locations of poles in LHP of Butterworth filter with this N and ωc:    
s1, s2, s3 etc. 
Form H(s), E.g., N=3 
Note that s3 will be the complex conjugate of  s1, 
and when combined for a 2nd order filter with  real coefficients.  
Apply bilinear transform and rearrange to put 
H(z) in standard form or as a cascade of  
1st and 2nd order filters each in standard form: 
H(z) = H1(z)H2(z) 
Check out the resulting frequency response of H(z). 
Implement using the difference equation(s).   
For high order filters, refer to literature for robust implementations of  the 
difference equations to avoid built up of rounding errors.   
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IIR High-pass, Notch and Band-pass Filters 
You can transform a low-pass Butterworth filter into a high-pass filter by replacing 
(s/jwc) with (jwc/s) in the original design. 
 
You can combine a low- and high-pass in series to produce a band-pass filter: 
H  =  HLP . HHP 

 
You can combine a low- and high-pass in parallel to produce a band-stop (notch) 
filter:       H  =  HLP +  HHP 

 
 
 
 
Or, you can use mappings to create analog Butterworth band-pass and band-stop 
filters in the first stage of the design.  
(Similar to the high-pass mapping in the first bullet, but more complicated.  
See Oppenheim and Schafer or most any other Digital Filtering book.) 
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