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CHAPTER 1

Introductory Concepts
• Elements of Vector Analysis
• Newton’s Laws
• Units
• The basis of Newtonian Mechanics
• D’Alembert’s Principle
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Science of Mechanics: It is concerned with 
the motion of material bodies.

• Bodies have different scales: 
Microscropic, macroscopic and 
astronomic scales.
In mechanics - mostly macroscopic bodies 
are considered.

• Speed of motion - serves as another 
important variable - small and high 
(approaching speed of light).
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• In Newtonian mechanics - study motion of bodies 
much bigger than particles at atomic scale, and 
moving at relative motions (speeds) much smaller 
than the speed of light.

• Two general approaches:
– Vectorial dynamics: uses Newton’s laws to write 

the equations of motion of a system, motion is 
described in physical coordinates and their 
derivatives; 

– Analytical dynamics: uses energy like quantities 
to define the equations of motion, uses the 
generalized coordinates to describe motion.

4

1.1   Vector Analysis:
• Scalars, vectors, tensors:

– Scalar:  It is a quantity expressible by a 
single real number.
Examples include: mass, time, temperature, 
energy, etc.
– Vector:  It is a quantity which needs both
direction and magnitude for complete 
specification.
– Actually (mathematically), it must also 
have certain transformation properties.
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These properties are: vector magnitude 
remains unchanged under rotation of axes.
ex: force, moment of a force, velocity, 

acceleration, etc.

– geometrically, vectors are shown or depicted   
as directed line segments of proper 

magnitude and direction.

6

– if we use a coordinate system, we define a 
basis set (        ): we can write

or, we can also use the    
three components and 
define

A A i A j A kx y z= + +� � �

{ } { , , }A A A Ax y z
T=

A

A A e=

e (unit vector)

A

X
Y

Z

ˆˆ ˆ, ,i j k
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– The three components Ax , Ay , Az can be 
used as 3-dimensional vector elements to 
specify the vector.

– Then, laws of vector-matrix algebra 
apply.

– Tensors:
scalar - an array of zero dimension
vector - an array of one dimension

8

– quantities which need arrays of two or higher
dimension to specify them completely - called
tensors of appropriate rank.
Again - to be a tensor, the object must also 
satisfy certain transformation properties of 
rotation and translation.
Exs: Second-order tensors: stress at a point 
in deformable body - stress tensor has nine 
components (a 3x3 matrix in a representation 
when the basis is defined), inertia tensor
(again, a 3x3 matrix in usual notation) 
expressing mass distribution in a rigid body.
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• TYPES OF VECTORS:  Consider a force 
acting on a body at point
P.  The force has a line 
of action AB. This force 
can lead to translation of 
the rigid body, rotation 
of the rigid body about 
some point, as well as 
deformation of the body.

F

P

F

A

B

10

or

The same force      is now acting at two 
different points P1 , P2 of the body, i.e., the 
lines of action are distinct.
– same translational effect
– the translational effect depends only on 

magnitude and direction of the force, not on 
its point of application or the line of action-
free vectors

F

P2

F

P1

F
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or

The force       has the same line of action AB 
in the two cases.  The points of application 
(P1 and P2) are different but moment about 
every point is the same →→→→ same rotational 
effect (as well as translational effect): effect 
of vector     depends on magnitude, 
direction as well as line of action - sliding 
vectors

F

P1

F

A

B

P2

F

A

B

F
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If the body is deformable, the effect of force 
is different depending its point of 
application; whether the force acts at point 
P1 or P2.  Thus, in such a case, the point of 
application is also crucial - bound vectors.

A

P1
F

B

P2

F

A

B

or

deformation
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• Equality of vectors:

For free vectors                ,                if and 
only if                    have the same 
magnitude and the same direction.

• Unit vectors:
If        is a vector with magnitude A, 
is a vector along      with unit length →→→→

or       

A and B A B=
A and B

A A A/

A
e A AA = / A AeA= .

14

unit vector in 
the direction 
of 

• Addition of vectors: Consider two vectors  
Their addition is a vector      given 

by                   . Also                   (addition is 
commutative).  The result is also a vector.

A.

C A B= + C B A= +

A

A A e=

e

Ae
|1|

.A and B C
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Graphically, one can use the parallelogram 
rule of vector addition. 
For more than two
vectors, one can add 
sequentially - polygon of vectors. Consider 
The addition of vectors A, B, and D .

or  

C A B= +

C A B E A B D C D= + = + + = +, ( )

( )
( ).

E A D B

A B D

= + +
= + +

A

B
BC

A

B
BC

E

D

O
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• COMPONENTS OF A VECTOR:
Consider the vector addition for A and B:
graphically:

We can interpret       and      to be components 
of the vector .  Clearly, the components of
are non-unique. As an
example, E and F are
also components.
We can make it more systematic.    

C A B= +

A B
C C

BC

AO

BC

AO

E
F
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• Let                    - three linearly independent unit 
vectors (not necessarily orthogonal) and let A be 
a vector.

We can write                                  where
are components of       

along the directions specified by unit vectors             
i = 1, 2, 3.  

Then :  

i = 1, 2, 3 are unique scalar components

e e e1 2 3, ,

A A A A= + +1 2 3
A ii , , ,= 1 2 3 A

ie ,

A A e A e A e= + +1 1 2 2 3 3

A i ,

A1
A2

A3
e2

e1

e3 A
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Let                                           be another
vector, with components expressed in same 
unit vectors. We can then write the sum as

+
The components of the vector C are then
→→→→ C1 = A1 + B1 ,  C2 = A2 + B2

and
C3 = A3 + B3.

B B e B e B e= + +1 1 2 2 3 3

C A B A B e A B e= + = + + +( ) ( )1 1 1 2 2 2
( )A B e3 3 3+
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• The more familiar case of unit vectors is 
the   Cartesian coordinate system - (x, y, z) 
Let                       - unit vectors along x, y 
and z directions. Then

are 
components of
along axes.

i j k, ,

x y x y z2A=A i+A j+A k where A , A , A

A Z

X

Y
Ax i

Ay j

Az k

A
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•SCALAR PRODUCT:
Definition: (DOT) For two vectors A and B, 
the dot product is defines as                                                                         
Dot product is Commutative, i.e.,

If

then  

provided the unit vectors are 
an orthogonal set, i.e.,

cosA B A B θ⋅ =
A B B A⋅ = ⋅

A A e B B ei
i

i i
i

i= =
= =
� �

1

3

1

3

, ,

A B A B A B A B⋅ = + +1 1 2 2 3 3

e e e e e e1 2 2 3 3 1 0⋅ = ⋅ = ⋅ = .

B

Aθθθθ

|B|cosθθθθ
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•VECTOR PRODUCT:   Let                 be two  
vectors that make an angle θθθθ with respect to 
each other. 
Then, the vector or cross product is defined as a 
vector C with magnitude .                                             

Let     be the unit 
vector normal to the 
plane formed by 
vectors A and B. It is 
fixed by the right hand 
screw rule. Then

A B,

k
sinC A B A B θ= × =

B

A

θθθθ
k

sinA B A B kθ× =

22

Some properties of cross product are :

Consider unit vectors for the Cartesian 
coordinate system (x,y,z), (i, j, k): Then

A×B=-B×A

i j j k k i× = × = × = 1

i i j j k k× = × = × = 0

i j k j k i× = × =;
k i j× =

i

jk

right-hand rule
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Now, consider cross-product again. When 
vectors A and B are expressed in component 
form: B B i B j B kx y z= + + ,

A B
i j k

A A A
B B B

x y z

x y z

× =

kBABA

jBABAiBABA

xyyx

zxxzyzzy

)(

)()(

−+

−+−≡

The cross product is evaluated by the operation
x y zA=A i +A j+A k

24

• SCALAR TRIPLE PRODUCT: Consider 
three vectors A, B, and C. The scalar triple 
product is given by

Note that the result is the  
same scalar quantity.  It 
can be interpreted as the 
volume of the 
parallelepiped having the 
vectors                      as 
the edges.  The sign can 
be +ve or -ve.

( ) ( )R=A B×C A×B C• = •

A B and C,
B

C
A
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• VECTOR TRIPLE PRODUCT:
Consider vectors A, B, and C. Then, vector 
triple product is defined as a vector D, given 
by                         Note that
One can show that

• DERIVATIVE OF A VECTOR:
Suppose that a vector      is a function of a scalar
u, i.e.,                .  We can then consider change 
in vector      associated with change in the scalar 
u.

A
A=A( )u

A

D=A×(B×C) A×(B×C) (A×B)×C≠

D=A×(B×C)=(A•C)B-(A•B)C

26

Let                  and   

Then 

or

This is the derivative of       with respect to u.   
Ex: The position vector r(t) for a particle 
moving depends on time. We define the
velocity to be 

A

A=A( )u A( ) A( ) Au u u+ ∆ ≡ + ∆

0

A( ) A -A( )

u

dA u u
du ulim

∆ →

+ ∆=
∆

0

A

u

dA
du ulim

∆ →

∆=
∆

0

( )
t

dr r
v t

dt tlim
∆ →

∆≡ =
∆
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ex:

Consider a particle P moving along a curved
path. Its position depends on distance from 
some landmark, O’, i.e.                   where ‘s’ 
is the distance along the curve.     
We shall consider               later in the next 
chapter.

x

s

∆∆∆∆srOP(s)
P P’

∆∆∆∆r
O

O’

y

z

( )OP OPr r s≡

( )OPdr s
ds

28

Some useful properties and rules of 
differentiation are: ( )

d dA dB
A B

du du du
+ = +

( )
( ( ) ( )) ( ) ( )

d dA dg u
g u A u g u A u

du du du
= +

( ) ( )
( ( ) ( )) ( ) ( )

d dB u dA u
A u B u A u B u

du du du
• = • + •

( ) ( )
( ( ) ( )) ( ) ( )

d dB u dA u
A u B u A u B u

du du du
× = × + ×

Finally, if

then  

1 1 2 2 3 3 ,i iA A e A e A e A e= + + =�

( ) ( )i i
i i

dA dedA
e A

du du du
= +� �
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Some more useful properties: Concept of a 
Dyad and Dyadic: Consider two vectors

Dyad: It consists of a pair of vectors        for two 
vectors                .      - called an antecedent,      -
called  a consequent.
Dyadic: It is a sum of dyads.  Suppose that the 
vectors                  are expressed in terms of a set of 
unit basis vectors                     , so that

Then,  

ba and

ba and
ba

a b

ba and
e e e1 2 3, ,

332211332211 and ebebebbeaeaeaa ++=++=

))(( 332211332211 ebebebeaeaea

baA

++++=
≡

30

and,

In the Text of Greenwood, the unit vectors
are mostly limited to the Cartesian basis

A Conjugate Dyadic for the dyadic      is obtained by 
interchanging the order of vectors                 and is 
denoted by   .  Thus,

A dyadic is symmetric if               , that is  

ji
i j

jijij
i j

i eeAeebabaA ����
= == =

==≡
3

1

3

1

3

1

3

1

e e e1 2 3, ,
),,( kji

A
ba and

TA

ji
i j

ijjij
i j

i
T eeAeeababA ����

= == =

==≡
3

1

3

1

3

1

3

1

TAA= jiij AA =
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An example of a symmetric dyadic is the inertia 
dyadic:

A dyadic is skew-symmetric if                 , that is, it is 
negative of its conjugate.  Note that symmetry 
property of a dyadic is independent of the unit vector 
basis or its orthogonality. 

kkIjkIikI

kjIjjIijI

kiIjiIiiIeeII

zzzyzx

yzyyyx

xzxyxxji
i j

ji

+++

+++

++=≡��
= =

3

1

3

1

TAA −=
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Some operational properties: 
1. The sum of two dyadics is a dyadic obtained by 

adding the corresponding elements in the same 
basis: 

2. The dot product of a dyadic with a vector is a 
vector.  Consider vectors                , and the 
derived dyadic           :   .  The dot product with 
the vector      is the vector     given by 

which is a vector in the direction of vector    .
Note that  

jijiji BACBAC +=+= ifonlyandif

ba and
baA =

c d

)()( cbacbacAd ⋅=⋅=⋅≡

a
dcbcbacAce ≠⋅=⋅=⋅≡ )()(
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� In general, pre-multiplying a vector by a dyadic
post-multiplying the vector by the same dyadic.

For a symmetric dyadic, the order does not matter.  
Consider the product of Inertia dyadic with the 
angular velocity vector:

Now, note that

33

≠

(

) ( )
xx xy xz yx yy yz

zx zy zz x y k

I I i i I i j I i k I j i I j j I j k

I k i I k j I k k I i j k

ω
ω ω ω ω

⋅ = + + + + +

+ + + ⋅ = ⋅ + +

( )

( ) etc.
xx x y k

xx x y k xx x

I i i i j k

I i i i i j i k I i

ω ω ω
ω ω ω ω

⋅ + +

= ⋅ + ⋅ + ⋅ =

Thus,

Since dot product of a dyadic and a vector is a new 
vector, dyadic is really an operator acting on a 
vector.  A interesting symmetric dyadic is the unit 
dyadic:

For any vector 
So, it leaves every vector unchanged.      

34

( )

( )

( )

xx x xy y xz z

yx x yy y yz z

zx x zy y zz z

I I I I i

I I I j

I I I k I

ω ω ω ω
ω ω ω
ω ω ω ω

⋅ = + +

+ + +

+ + + = ⋅

U i i j j k k≡ + +

, ( ) ( ) ( )a U a i i a j j a k k a

a U a

⋅ ≡ ⋅ + ⋅ + ⋅

= ⋅ =
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Finally, consider the cross product of a dyadic with a 
vector:

See Section 7.5 for Greenwood.

35

3 3

1 1

3 3 3 3

1 1 1 1

. If , then

( )

another dyadic

i ji j
i j

i j i ji j i j
i j i j

c A A c A A e e

c A e e A c e e

= =

= = = =

× ≠ × =

× = ×

−

��

�� ��
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1.2  Newton’s Laws:       There are three laws

1. Every body continues in its state of rest, 
or of uniform motion in a straight line, 
unless compelled to change that state by 
forces acting upon it.

2. The time rate of change of linear 
momentum of a body is proportional to 
the force acting upon it and occurs in the 
direction in which the force acts.
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3. To every action there is an equal and 
opposite reaction.

• Laws of motion for a particle:
Let       = applied force, 
m = mass of the particle,      = velocity at an 
instant,

= linear momentum of the particle.  
Then,

(for a body with constant mass)

F
v

p mv≡
d d

F=k (p)=k (mv)
dt dt

=kma

38

Here, k > 0 constant; it is chosen  such that  
k = 1 depending on the choice of units.

→→→→
(for constant mass system)

Since,                are vectors, we can express 
them in the appropriate coordinate system.
ex:  in a Cartesian coordinate system (x,y,z):

or

F and a

d d
F= (p)= (mv)

dt dt
=ma

x y z x y z

x x y y z z

F=F i + F j+F k=m(a i + a j+a k)

F =ma , F =ma , F =ma
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Imp:  Newton’s laws are applicable in a 
special reference frame - called the inertial 
reference frame.
Note that in practice, any fixed reference 
frame or rigid body will suffice.
READING ASSIGNMENT #1: The 

discussion in text.
1.3  UNITS:
One first introduces dimensions associated 
with each quantity.

40

Note that the quantities related by Newton’s 
Laws are:  F - force, M - mass, L - length, T -
time.

Since there is one relation among the four 
quantities (second law), three of the units 
are independent, and the fourth fixed by 
the requirement of principle of
dimensional homogeneity.

• Absolute system - mass, length, and time 
are fundamental quantities, where as 
force is considered a derived quantity.
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In the absolute system, the units of various 
quantities are:  Mass - kilogram (kg);     
time - second (sec.);  length - meter (m)

Now, consider the dimensional relation:                       
F  =  ML/T2 =  kg.m/s2

This unit is called a Newton:  it is the force 
needed to give an object of mass 1 kg an 
acceleration of 1 m/s2.
• Gravitational system - In this case, length, 

time, and force are assumed fundamental, 
where as mass is derived.  1 slug = lb.s2/ft

42

READING ASSIGNMENT #2:

1.4.   The Basics of Newtonian Mechanics.
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1.5   D’ALEMBERT’S PRINCIPLE:
Consider Newton’s second law:
If we write   
one can imagine (-ma) to represent another
force, the so called inertia force.  Then, we just 
have summation of forces = 0, that is, an
equivalent statics problem.  We will see that
this principle has profound significance when
considering derivation of Lagrange’s 
equations. 

(F-ma)=0,
F=ma

44

Ex  1.1: (Text)
Consider a massless rigid rod
suspended from point O in a
box which is accelerating to
the right at a constant
acceleration ‘a’.

Find: The tension in the
cable and the angle θθθθ,
when rod has reached a
steady position relative
to the box.

m

θθθθ
l

O     →→→→ a

↓↓↓↓g

Free body diagram:

T

mg

ma
θθθθ



1/11/2010

23

45

Ex  1.1

D’Alembert’s principle:

m

θθθθ
l

O     →→→→ a

↓↓↓↓g
Free body diagram:

T

mg

ma
θθθθ

x

y

x x

y y

F -ma =0: Tsin�-ma=0;

F -ma =0: Tcos�-mg=0;

�

�
2 2T=m (a +g ), tan�=a/g�
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Ex 1.2: (to clearly point out the difference 
in components and orthogonal projections)

• Consider the vector     with
at an angle of 60° with the horizontal.

• Suppose that we want to express it in 
terms of unit vectors            where

A A = 5,

e e1 2,

+ve horizontal

A θθθθ=60°
j

i

1 2e = ( i ), e = 1 135° (=(- i + j )/ 2).→ �
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Now 

1 2A=A +A

1 21 2A=A e +A e

The vector sum can be represented 
as

or

1 1 2 2

1 1 2

A=5(cos60 i +sin60 j )=A e +A e

=A i +A (- i + j )/ 2

A1

A2

e1

e2

A
135°

60°

1 1 2

1 2 2

1 2

(5 i +5 3 j )/2=A i +A (- i + j )/ 2

:5 / 2 / 2 ; : 5 6 / 2

[5(1 3) 5 6 ] / 2

or i A A j A

A e e

→

= − =

→ = + +

48

In the above,

• What about orthogonal projections of A?

1

22

15(1 3) / 2component of along

component of al

;

5 6 / 2.ong

is e

is e

A e

A e

+

A1

A2

e1

e2

A
135°

60°
|A2|

|A1|


