CHAPTER 1

Introductory Concepts

- Elements of Vector Analysis
- Newton's Laws
- Units
- The basis of Newtonian Mechanics
- D'Alembert's Principle

Science of Mechanics: It is concerned with the motion of material bodies.

- Bodies have different scales:

Microscropic, macroscopic and astronomic scales.
In mechanics - mostly macroscopic bodies are considered.

- Speed of motion - serves as another important variable - small and high (approaching speed of light).
- In Newtonian mechanics - study motion of bodies much bigger than particles at atomic scale, and moving at relative motions (speeds) much smaller than the speed of light.
- Two general approaches:
- Vectorial dynamics: uses Newton's laws to write the equations of motion of a system, motion is described in physical coordinates and their derivatives;
- Analytical dynamics: uses energy like quantities to define the equations of motion, uses the generalized coordinates to describe motion.

1.1 Vector Analysis:

- Scalars, vectors, tensors:
- Scalar: It is a quantity expressible by a single real number.
Examples include: mass, time, temperature, energy, etc.
- Vector: It is a quantity which needs both direction and magnitude for complete specification.
- Actually (mathematically), it must also have certain transformation properties.

These properties are: vector magnitude remains unchanged under rotation of axes. ex: force, moment of a force, velocity, acceleration, etc.

- geometrically, vectors are shown or depicted as directed line segments of proper magnitude and direction.

- if we use a coordinate system, we define a basis set $(\hat{i}, \hat{j}, \hat{k})$: we can write

$$
\underline{A}=A_{x} \hat{\mathrm{i}}+\mathrm{A}_{\mathrm{y}} \hat{\mathrm{j}}+\mathrm{A}_{\mathrm{z}} \hat{\mathrm{k}}
$$

 or, we can also use the three components and define

$$
\{\mathrm{A}\}=\left\{\mathrm{A}_{\mathrm{x}}, \mathrm{~A}_{\mathrm{y}}, \mathrm{~A}_{\mathrm{z}}\right\}^{\mathrm{T}}
$$

- The three components A_{x}, A_{y}, A_{z} can be used as 3-dimensional vector elements to specify the vector.
- Then, laws of vector-matrix algebra apply.
- Tensors:
scalar - an array of zero dimension vector - an array of one dimension
- quantities which need arrays of two or higher dimension to specify them completely - called tensors of appropriate rank.
Again - to be a tensor, the object must also satisfy certain transformation properties of rotation and translation.

Exs: Second-order tensors: stress at a point in deformable body - stress tensor has nine components (a 3×3 matrix in a representation when the basis is defined), inertia tensor (again, a 3x3 matrix in usual notation) expressing mass distribution in a rigid body ${ }_{8}$

- TYPES OF VECTORS: Consider a force \underline{F} acting on a body at point ${ }^{-}$ B. The force has a line of action $A B$. This force can lead to translation of the rigid body, rotation of the rigid body about some point, as well as deformation of the body.

or

The same force F is now acting at two different points $\overline{\mathbf{P}}_{1}, \mathrm{P}_{\mathbf{2}}$ of the body, i.e., the lines of action are distinct.

- same translational effect
- the translational effect depends only on magnitude and direction of the force, not on its point of application or the line of actionfree vectors

The force \underline{F} has the same line of action $A B$ in the two cases. The points of application (P_{1} and P_{2}) are different but moment about every point is the same \rightarrow same rotational effect (as well as translational effect): effect of vector \underline{F} depends on magnitude, direction as well as line of action - sliding vectors

If the body is deformable, the effect of force is different depending its point of application; whether the force acts at point P_{1} or P_{2}. Thus, in such a case, the point of application is also crucial - bound vectors.

- Equality of vectors:

For free vectors \underline{A} and $\underline{B}, \underline{A}=\underline{B}$ if and only if \underline{A} and \underline{B} have the same magnitude and the same direction.

- Unit vectors:

If \underline{A} is a vector with magnitude $A, \underline{A} / \mathrm{A}$ is a vector along \underline{A} with unit length \rightarrow

$$
\underline{\mathrm{e}}_{\mathrm{A}}=\underline{\mathrm{A}} / \mathrm{A} \text { or } \underline{\mathrm{A}}=\mathrm{A}_{\mathrm{A}} .
$$

- Addition of vectors: Consider two vectors \underline{A} and \underline{B}. Their addition is a vector \underline{C} given by $\underline{C}=\underline{A}+\underline{B}$. Also $\underline{\mathrm{C}}=\underline{\mathrm{B}}+\underline{\mathrm{A}}$ (addition is commutative). The result is also a vector.

$$
\underline{\mathrm{C}}=\underline{\mathrm{A}}+\underline{\mathrm{B}}
$$

Graphically, one can use the parallelogram rule of vector addition.
For more than two vectors, one can add

sequentially - polygon of vectors. Consider The addition of vectors $\underline{A}, \underline{B}$, and \underline{D}.
$\underline{C}=\underline{A}+\underline{B} \quad, \quad \underline{E}=(\underline{A}+\underline{B})+\underline{D}=\underline{C}+\underline{D}$
or
$\underline{E}=(\underline{A}+\underline{D})+\underline{B}$
$=\underline{A}+(\underline{B}+\underline{D})$.

- COMPONENTS OF A VECTOR:

Consider the vector addition for \underline{A} and \underline{B} : graphically:

We can interpret \underline{A} and \underline{B} to be components of the vector $\underline{\mathrm{C}}$. Clearly, the components of $\underline{\mathrm{C}}$ are non-unique. As an example, \underline{E} and \underline{F} are also components.

We can make it more systematic.

- Let $\underline{\mathrm{e}}_{1}, \underline{\mathrm{e}}_{2}, \underline{\mathrm{e}}_{3}$ - three linearly independent unit vectors (not necessarily orthogonal) and let $\underline{\mathbf{A}}$ be a vector.

We can write $\underline{A}=\underline{A}_{1}+\underline{A}_{2}+\underline{A}_{3} \quad$ where $\underline{A}_{i}, i=1,2,3$ are components of \underline{A} along the directions specified by unit vectors $\underline{e}_{i}, \mathbf{i}=\mathbf{1 , 2 , 3}$.
Then :
$\underline{\mathrm{A}}=\mathrm{A}_{1} \underline{\mathrm{e}}_{1}+\mathrm{A}_{2} \underline{\mathrm{e}}_{2}+\mathrm{A}_{3} \underline{\mathrm{e}}_{3}$

$A_{i}, \mathbf{i}=\mathbf{1 , 2 , 3}$ are unique scalar components

Let $\underline{B}=B_{1} \underline{e}_{1}+B_{2} \underline{\mathrm{e}}_{2}+\mathrm{B}_{3} \underline{\mathrm{e}}_{3}$ be another vector, with components expressed in same unit vectors. We can then write the sum as
$\underline{\mathrm{C}}=\underline{\mathrm{A}}+\underline{B}=\left(\mathrm{A}_{1}+\mathrm{B}_{1}\right) \underline{e}_{1}+\left(\mathrm{A}_{2}+\mathrm{B}_{2}\right) \underline{\mathrm{e}}_{2}$
$+\left(\mathrm{A}_{3}+\mathrm{B}_{3}\right) \mathrm{e}_{3}$
The components of the vector \underline{C} are then
$\rightarrow \mathrm{C}_{1}=\mathrm{A}_{1}+\mathrm{B}_{1}, \mathrm{C}_{2}=\mathrm{A}_{2}+\mathrm{B}_{2}$
and

$$
C_{3}=A_{3}+B_{3} .
$$

- The more familiar case of unit vectors is the Cartesian coordinate system - ($\mathbf{x}, \mathbf{y}, \mathbf{z}$) Let $\underline{\mathrm{i}}, \underline{\mathrm{j}}, \underline{\mathrm{k}}$ - unit vectors along \mathbf{x}, \mathbf{y} and z directions. Then
$\underline{A}=A_{x} \underline{i}+A_{y} \underline{j}+A_{2} \underline{k}$ where A_{x}, A_{y}, A_{z} are components of \underline{A} along axes.

-SCALAR PRODUCT:
Definition: (DOT) For two vectors \underline{A} and \underline{B}, the dot product is defines as $\underline{A} \cdot \underline{B}=|\underline{A}||\underline{B}| \cos \theta$ Dot product is Commutative, i.e., $\underline{A} \cdot \underline{B}=\underline{B} \cdot \underline{A}$

$$
\text { If } \underline{A}=\sum_{i=1}^{3} \mathrm{~A}_{\mathrm{i}} \underline{\mathrm{e}}_{\mathrm{i}} \quad, \quad \underline{\mathrm{~B}}=\sum_{\mathrm{i}=1}^{3} \mathrm{~B}_{\mathrm{i}} \underline{\mathrm{e}}_{\mathrm{i}},
$$

A then

$$
\underline{\mathrm{A}} \cdot \underline{\mathrm{~B}}=\mathrm{A}_{1} \mathrm{~B}_{1}+\mathrm{A}_{2} \mathrm{~B}_{2}+\mathrm{A}_{3} \mathrm{~B}_{3}
$$

provided the unit vectors are an orthogonal set, i.e.,

$$
\underline{\mathrm{e}}_{1} \cdot \underline{\mathrm{e}}_{2}=\underline{\mathrm{e}}_{2} \cdot \underline{\mathrm{e}}_{3}=\underline{\mathrm{e}}_{3} \cdot \underline{\mathrm{e}}_{1}=0
$$

-VECTOR PRODUCT: Let \underline{A}, B be two vectors that make an angle θ with respect to each other.

Then, the vector or cross product is defined as a vector $\underline{\mathbf{C}}$ with magnitude $|\underline{C}|=|\underline{A} \times \underline{B}|=|\underline{A}||\underline{B}| \sin \theta$.

Let \underline{k} be the unit vector normal to the plane formed by vectors \underline{A} and \underline{B}. It is fixed by the right hand screw rule. Then

$$
\underline{A} \times \underline{B}=|\underline{A}||\underline{B}| \sin \theta \underline{k}
$$

Some properties of cross product are :

$$
\underline{\mathrm{A}} \times \underline{\mathrm{B}}=-\underline{B} \times \underline{\mathrm{A}}
$$

Consider unit vectors for the Cartesian coordinate system ($\mathbf{x}, \mathbf{y}, \mathbf{z}$), ($\mathbf{i}, \underline{\mathbf{j}}, \underline{\mathbf{k}})$: Then

$$
\begin{aligned}
& |\underline{\mathrm{i}} \times \underline{\mathrm{j}}|=|\underline{\mathrm{j}} \times \underline{\mathrm{k}}|=|\underline{\mathrm{k}} \times \underline{\mathrm{i}}|=1 \\
& \underline{\mathrm{i}} \times \underline{\mathrm{i}}=\underline{\mathrm{j}} \times \underline{\mathrm{j}}=\underline{\mathrm{k}} \times \underline{\mathrm{k}}=0 \\
& \underline{\mathrm{i}} \times \underline{\mathrm{j}}=\underline{\mathrm{k}} \quad ; \quad \underline{\mathrm{j}} \times \underline{\mathrm{k}}=\underline{\mathrm{i}}
\end{aligned}
$$

right-hand rule $\underline{\mathrm{k}} \times \underline{\mathrm{i}}=\underline{\mathrm{j}}$

Now, consider cross-product again. When vectors \underline{A} and \underline{B} are expressed in component form: $\underline{A}=A_{x} \underline{i}+A_{y} \underline{j}+A_{z} \underline{k} \quad \underline{B}=B_{x} \underline{i}+B_{y} \underline{j}+B_{z} \underline{k}$, The cross product is evaluated by the operation

$$
\begin{aligned}
\underline{\mathrm{A}} \times \underline{\mathrm{B}}= & \left|\begin{array}{ccc}
\underline{\mathrm{i}} & \underline{\mathrm{j}} & \underline{\mathrm{k}} \\
\mathrm{~A}_{\mathrm{x}} & \mathrm{~A}_{\mathrm{y}} & \mathrm{~A}_{\mathrm{z}} \\
\mathrm{~B}_{\mathrm{x}} & \mathrm{~B}_{\mathrm{y}} & \mathrm{~B}_{\mathrm{z}}
\end{array}\right| \\
\equiv & \left(A_{y} B_{z}-A_{z} B_{y}\right) \underline{i}+\left(A_{z} B_{x}-A_{x} B_{z}\right) \underline{j} \\
& +\left(A_{x} B_{y}-A_{y} B_{x}\right) \underline{k}
\end{aligned}
$$

- SCALAR TRIPLE PRODUCT: Consider three vectors $\underline{A}, \underline{B}$, and \underline{C}. The scalar triple product is given by $R=\underline{A} \bullet(\underline{B} \times \underline{C})=(\underline{A} \times \underline{B}) \bullet \underline{C}$

Note that the result is the

same scalar quantity. It can be interpreted as the volume of the parallelepiped having the vectors $\underline{A}, \underline{B}$ and $\underline{\mathrm{C}}$ as the edges. The sign can be +ve or -ve.

- VECTOR TRIPLE PRODUCT:

Consider vectors $\underline{\mathbf{A}, \underline{B}, \text { and } \underline{C} \text {. Then, vector }}$ triple product is defined as a vector \underline{D}, given by $\underline{D}=\underline{A} \times(\underline{B} \times \underline{C}) \quad$ Note that $\underline{A} \times(\underline{B} \times \underline{C}) \neq(\underline{A} \times \underline{B}) \times \underline{C}$ One can show that

$$
\underline{\mathrm{D}}=\underline{\mathrm{A}} \times(\underline{\mathrm{B}} \times \underline{\mathrm{C}})=(\underline{\mathrm{A}} \cdot \underline{\mathrm{C}}) \underline{\mathrm{B}}-(\underline{\mathrm{A}} \cdot \underline{\mathrm{~B}}) \underline{\mathrm{C}}
$$

- DERIVATIVE OF A VECTOR:

Suppose that a vector \underline{A} is a function of a scalar u i.e., $\underline{A}=\underline{A}(u)$. We can then consider change in vector \underline{A} associated with change in the scalar \boldsymbol{u}.

Let $\underline{\mathrm{A}}=\underline{\mathrm{A}}(u) \quad$ and $\underline{\mathrm{A}}(u+\Delta u) \equiv \underline{\mathrm{A}}(u)+\Delta \underline{\mathrm{A}}$
Then $\frac{d \underline{A}}{d u}=\lim _{\Delta u \rightarrow 0} \frac{\underline{\mathrm{~A}}(u)+\Delta \underline{\mathrm{A}}-\underline{\mathrm{A}}(u)}{\Delta u}$
or $\quad \frac{d \underline{A}}{d u}=\lim _{\Delta u \rightarrow 0} \frac{\Delta \underline{\mathrm{~A}}}{\Delta u}$
This is the derivative of \underline{A} with respect to u.
Ex: The position vector $\underline{\boldsymbol{r}}(\mathbf{t})$ for a particle moving depends on time. We define the velocity to be $\underline{v}(t) \equiv \frac{d \underline{r}}{d t}=\lim _{\Delta t \rightarrow 0} \frac{\Delta \underline{r}}{\Delta t}$

ex:

Consider a particle P moving along a curved path. Its position depends on distance from some landmark, \mathbf{O} ', i.e. $r_{O P} \equiv r_{O P}(s)$ where 's' is the distance along the curve. We shall consider $\frac{d r_{o p}(s)}{d s}$ later in the next chapter.

Some useful properties and rules of
differentiation are: $\frac{d}{d u}(\underline{A}+\underline{B})=\frac{d \underline{A}}{d u}+\frac{d \underline{B}}{d u}$
$\frac{d}{d u}(g(u) \underline{A}(u))=g(u) \frac{d \underline{A}}{d u}+\frac{d g(u)}{d u} \underline{A}(u)$
$\frac{d}{d u}(\underline{A}(u) \bullet \underline{B}(u))=\underline{A}(u) \bullet \frac{d \underline{B}(u)}{d u}+\frac{d \underline{A}(u)}{d u} \bullet \underline{B}(u)$
$\frac{d}{d u}(\underline{A}(u) \times \underline{B}(u))=\underline{A}(u) \times \frac{d \underline{B}(u)}{d u}+\frac{d \underline{A}(u)}{d u} \times \underline{B}(u)$
Finally, if $\underline{A}=A_{1} \underline{e}_{1}+A_{2} \underline{e}_{2}+A_{3} \underline{e}_{3}=\sum A_{i} \underline{e}_{i}$,
then $\frac{d \underline{A}}{d u}=\sum\left(\frac{d A_{i}}{d u}\right) e_{i}+\sum A_{i}\left(\frac{d \underline{e}_{i}}{d u}\right)$

Some more useful properties: Concept of a

 Dyad and Dyadic: Consider two vectors \underline{a} and \underline{b}Dyad: It consists of a pair of vectors $\underline{a} \underline{b}$ for two vectors \underline{a} and $\underline{b} . \underline{a}$ - called an antecedent, \underline{b} called a consequent.
Dyadic: It is a sum of dyads. Suppose that the vectors \underline{a} and \underline{b} are expressed in terms of a set of unit basis vectors $\underline{\mathrm{e}}_{1}, \underline{\mathrm{e}}_{2}, \underline{\mathrm{e}}_{3}$, so that
$\underline{a}=a_{1} \underline{e}_{1}+a_{2} \underline{e}_{2}+a_{3} \underline{e}_{3}$ and $\underline{b}=b_{1} \underline{e}_{1}+b_{2} \underline{e}_{2}+b_{3} \underline{e}_{3}$
Then, $\underline{A} \equiv \underline{a} \underline{b}$

$$
=\left(a_{1} \underline{e}_{1}+a_{2} \underline{e}_{2}+a_{3} \underline{e}_{3}\right)\left(b_{1} \underline{e}_{1}+b_{2} \underline{e}_{2}+b_{3} \underline{e}_{3}\right)
$$

and, $\underline{A} \equiv \underline{a} \underline{b}=\sum_{i=1}^{3} \sum_{j=1}^{3} a_{i} b_{j} \underline{e}_{i} \underline{e}_{j}=\sum_{i=1}^{3} \sum_{j=1}^{3} A_{i j} \underline{e}_{i} \underline{e}_{j}$
In the Text of Greenwood, the unit vectors $\underline{\mathrm{e}}_{1}, \underline{\mathrm{e}}_{2}, \underline{\mathrm{e}}_{3}$ are mostly limited to the Cartesian basis ($\underline{i}, \underline{j}, \underline{k}$)

A Conjugate Dyadic for the dyadic \underline{A} is obtained by interchanging the order of vectors \underline{a} and \underline{b} and is denoted by \underline{A}^{T}. Thus,

$$
\underline{A}^{T} \equiv \underline{b} \underline{a}=\sum_{i=1}^{3} \sum_{j=1}^{3} b_{i} a_{j} \underline{e}_{i} \underline{e}_{j}=\sum_{i=1}^{3} \sum_{j=1}^{3} A_{j i} \underline{e}_{i} \underline{e}_{j}
$$

A dyadic is symmetric if $\underline{A}=\underline{A}^{T}$, that is $A_{i j}=A_{j i}$

An example of a symmetric dyadic is the inertia dyadic:

$$
\begin{aligned}
\underline{I} \equiv \sum_{i=1}^{3} \sum_{j=1}^{3} I_{i j} \underline{e}_{i} \underline{e}_{j} & =I_{x x} \underline{i}+I_{x y} \underline{i} \underline{j}+I_{x z} \underline{i} \underline{k} \\
& +I_{y x} \underline{j} \underline{i}+I_{y y} \underline{j} \underline{j}+I_{y z} \underline{j} \underline{k} \\
& +I_{z x} \underline{k} \underline{i}+I_{z y} \underline{\underline{j}} \underline{j}+I_{z z} \underline{k} \underline{k}
\end{aligned}
$$

A dyadic is skew-symmetric if $\underline{A}=-\underline{A}^{T}$, that is, it is negative of its conjugate. Note that symmetry property of a dyadic is independent of the unit vector basis or its orthogonality.

Some operational properties:

1. The sum of two dyadics is a dyadic obtained by adding the corresponding elements in the same basis:

$$
\underline{C}=\underline{A}+\underline{B} \text { if and onlyif } C_{i j}=A_{i j}+B_{i j}
$$

2. The dot product of a dyadic with a vector is a vector. Consider vectors \underline{a} and \underline{b}, and the derived dyadic $\underline{A}=\underline{a} \underline{b}$. The dot product with the vector \underline{c} is the vector \underline{d} given by

$$
\underline{d} \equiv \underline{A} \cdot \underline{c}=(\underline{a} \underline{b}) \cdot \underline{c}=\underline{a}(\underline{b} \cdot \underline{c})
$$

which is a vector in the direction of vector \underline{a}.
Note that $\underline{e} \equiv \underline{c} \cdot \underline{A}=\underline{c} \cdot(\underline{a} \underline{b})=(\underline{c} \cdot \underline{b}) \underline{c} \neq \underline{\bar{d}}$
\Rightarrow In general, pre-multiplying a vector by a dyadic \neq post-multiplying the vector by the same dyadic.

For a symmetric dyadic, the order does not matter. Consider the product of Inertia dyadic with the angular velocity vector:
$\underline{I} \cdot \underline{\omega}=\left(I_{x x} \underline{i} \underline{i}+I_{x y} \underline{i} \underline{j}+I_{x z} \underline{i} \underline{k}+I_{y x} \underline{j} \underline{i}+I_{y y} \underline{j} \underline{j}+I_{y z} \underline{j} \underline{k}\right.$ $\left.+I_{z x} \underline{k} \underline{i}+I_{z y} \underline{k} \underline{j}+I_{z z} \underline{k} \underline{k}\right) \cdot \underline{\omega}=\underline{I} \cdot\left(\omega_{x} \underline{i}+\omega_{y} \underline{j}+\omega_{k} \underline{k}\right)$
Now, note that $\quad I_{x x} \underline{i} \cdot\left(\omega_{x} \underline{i}+\omega_{y} \underline{j}+\omega_{k} \underline{k}\right)$
$=I_{x x}\left(\omega_{x \underline{i}} \underline{i}+\omega_{y} \underline{i} \cdot \underline{j}+\omega_{k} \underline{i} \cdot \underline{k}\right)=I_{x x} \omega_{x} \underline{i}$ etc.

Thus, $\underline{I} \cdot \underline{\omega}=\left(I_{x x} \omega_{x}+I_{x y} \omega_{y}+I_{x z} \omega_{z}\right) \underline{i}$

$$
\begin{aligned}
& +\left(I_{y x} \omega_{x}+I_{y y} \omega_{y}+I_{y z} \omega_{z}\right) \underline{j} \\
& +\left(I_{z x} \omega_{x}+I_{z y} \omega_{y}+I_{z z} \omega_{z}\right) \underline{k}=\underline{\omega} \cdot \underline{I}
\end{aligned}
$$

Since dot product of a dyadic and a vector is a new vector, dyadic is really an operator acting on a vector. A interesting symmetric dyadic is the unit dyadic:

$$
\underline{U} \equiv \underline{i} \underline{i}+\underline{j} \underline{j}+\underline{k} \underline{k}
$$

For any vector $\underline{a}, \underline{U} \cdot \underline{a} \equiv \underline{i}(\underline{i} \cdot \underline{a})+\underline{j} \underline{(j} \cdot \underline{a})+\underline{k}(\underline{k} \cdot \underline{a})$ $=\underline{a} \cdot \underline{U}=\underline{a}$ So, it leaves every vector unchanged.

Finally, consider the cross product of a dyadic with a vector:

$$
\begin{gathered}
\text { vector: } \underline{c} \times \underline{A} \neq \underline{A} \times \underline{c} . \quad \text { If } \underline{A}=\sum_{i=1}^{3} \sum_{j=1}^{3} A_{i j} \underline{e}_{i} \underline{e}_{j} \text {, then } \\
\underline{c} \times \sum_{i=1}^{3} \sum_{j=1}^{3} A_{i j} \underline{e}_{i} \underline{e}_{j}=\sum_{i=1}^{3} \sum_{j=1}^{3} A_{i j}\left(\underline{c} \times \underline{e}_{i}\right) \underline{e}_{j}
\end{gathered}
$$

- another dyadic

See Section 7.5 for Greenwood.
1.2 Newton's Laws: There are three laws

1. Every body continues in its state of rest, or of uniform motion in a straight line, unless compelled to change that state by forces acting upon it.
2. The time rate of change of linear momentum of a body is proportional to the force acting upon it and occurs in the direction in which the force acts.
3. To every action there is an equal and opposite reaction.

- Laws of motion for a particle:

Let \underline{F} = applied force,
$\mathbf{m}=$ mass of the particle, $\underline{v}=$ velocity at an instant,
$\underline{p} \equiv m \underline{v}=$ linear momentum of the particle.
Then, $\underline{F}=\mathrm{k} \frac{\mathrm{d}}{\mathrm{dt}}(\underline{p})=\mathrm{k} \frac{\mathrm{d}}{\mathrm{dt}}(\mathrm{m} \underline{v})$

$$
=\mathrm{kma} \quad \text { (for a body with constant mass) }
$$

Here, $k>0$ constant; it is chosen such that $k=1$ depending on the choice of units.

$$
\begin{aligned}
\rightarrow \underline{\mathrm{F}} & =\frac{\mathrm{d}}{\mathrm{dt}}(\underline{\mathrm{p}})=\frac{\mathrm{d}}{\mathrm{dt}}(\mathrm{~m} \underline{v}) \\
& =\mathrm{ma}
\end{aligned}
$$

(for constant mass system)
Since, \underline{F} and \underline{a} are vectors, we can express them in the appropriate coordinate system. ex: in a Cartesian coordinate system ($\mathbf{x}, \mathbf{y}, \mathbf{z}$):

$$
\begin{gathered}
\underline{F}=F_{x} \underline{i}+F_{y} \underline{j}+F_{z} \underline{k}=m\left(a_{x} \underline{i}+a_{y} \underline{j}+a_{z} \underline{k}\right) \\
F_{x}=m a_{x}, F_{y}=m a_{y}, F_{z}=m a_{z}
\end{gathered}
$$

or

Imp: Newton's laws are applicable in a special reference frame - called the inertial reference frame.

Note that in practice, any fixed reference
frame or rigid body will suffice.
READING ASSIGNMENT \#1: The discussion in text.

1.3 UNITS:

One first introduces dimensions associated with each quantity.

Note that the quantities related by Newton's Laws are: F - force, M - mass, L - length, T time.

Since there is one relation among the four quantities (second law), three of the units are independent, and the fourth fixed by the requirement of principle of dimensional homogeneity.

- Absolute system - mass, length, and time are fundamental quantities, where as force is considered a derived quantity.

In the absolute system, the units of various quantities are: Mass - kilogram (kg); time - second (sec.); length - meter (m)

Now, consider the dimensional relation:

$$
\mathbf{F}=\mathrm{ML} / \mathrm{T}^{2}=\mathrm{kg} \cdot \mathrm{~m} / \mathrm{s}^{2}
$$

This unit is called a Newton: it is the force needed to give an object of mass 1 kg an acceleration of $1 \mathrm{~m} / \mathbf{s}^{2}$.

- Gravitational system - In this case, length, time, and force are assumed fundamental, where as mass is derived. 1 slug $=\mathbf{l b} . \mathbf{s}^{2} / \mathbf{f t}$

READING ASSIGNMENT \#2:

1.4. The Basics of Newtonian Mechanics.

1.5 D'ALEMBERT'S PRINCIPLE:

Consider Newton's second law: $\underline{F}=m \underline{a}$
If we write $(\underline{F}-\mathrm{ma})=0$,
one can imagine (-ma) to represent another
force, the so called inertia force. Then, we just have summation of forces $=0$, that is, an equivalent statics problem. We will see that this principle has profound significance when considering derivation of Lagrange's equations.

Ex 1.1: (Text)

Consider a massless rigid rod suspended from point O in a box which is accelerating to the right at a constant acceleration ' \mathbf{a} '.

Find: The tension in the cable and the angle θ, when rod has reached a steady position relative to the box.

Free body diagram:

Ex 1.1

D'Alembert's principle:
$\sum \mathrm{F}_{\mathrm{x}}-\mathrm{ma}_{\mathrm{x}}=0: \quad \mathrm{T} \sin \theta-\mathrm{ma}=0 ;$
$\sum \mathrm{F}_{\mathrm{y}}-\mathrm{ma}_{\mathrm{y}}=0: \quad \mathrm{T} \cos \theta-\mathrm{mg}=0 ;$
$\Rightarrow \mathrm{T}=\mathrm{m} \sqrt{\left(\mathrm{a}^{2}+\mathrm{g}^{2}\right)}, \quad \tan \theta=\mathrm{a} / \mathrm{g}$

Ex 1.2: (to clearly point out the difference in components and orthogonal projections)

- Consider the vector \underline{A} with $|\underline{\mathrm{A}}|=5$, at an angle of 60° with the horizontal.

+ve horizontal

- Suppose that we want to express it in terms of unit vectors $\underline{\mathrm{e}}_{1}, \underline{\mathrm{e}}_{2}$ where $\underline{\mathrm{e}}_{1}=\rightarrow(\underline{\mathrm{i}}), \quad \underline{\mathrm{e}}_{2}=|\underline{1}| \measuredangle 135^{\circ}(=(-\underline{\mathrm{i}}+\underline{\mathrm{j}}) / \sqrt{2})$.

The vector sum can be represented

as $\underline{A}=\underline{A}_{1}+\underline{A}_{2}$
or $\underline{A}=\mathrm{A}_{1} \underline{\mathrm{e}}_{1}+\mathrm{A}_{2} \underline{\mathrm{e}}_{2}$
Now

$\underline{\mathrm{A}}=5(\cos 60 \underline{\mathrm{i}}+\sin 60 \underline{\mathrm{j}})=\mathrm{A}_{1} \underline{\mathrm{e}}_{1}+\mathrm{A}_{2} \underline{\mathrm{e}}_{2}$
$=A_{1} \underline{i}+A_{2}(-\underline{i}+\underline{j}) / \sqrt{2}$
$\rightarrow(5 \underline{\mathrm{i}}+5 \sqrt{3} \underline{\mathrm{j}}) / 2=\overline{\mathrm{A}}_{1} \underline{\mathrm{i}}+\mathrm{A}_{2}(-\underline{\mathrm{i}}+\underline{\mathrm{j}}) / \sqrt{2}$
or $\stackrel{i}{\underline{i}}: 5 / 2=A_{1}-A_{2} / \sqrt{2} ; \underline{\underline{j}}: A_{2}=5 \sqrt{6} / 2$
$\rightarrow \underline{A}=\left[5(1+\sqrt{3}) \underline{e_{1}}+5 \sqrt{6} \underline{e_{2}}\right] / 2$

In the above,

component of \underline{A} along \underline{e}_{1} is $5(1+\sqrt{3}) \underline{e}_{1} / 2$;
component of \underline{A} along \underline{e}_{2} is $5 \sqrt{6} \underline{e}_{2} / 2$.

- What about orthogonal projections of $\underline{\mathbf{A}}$?

