CHAPTER 4

DYNAMICS OF A SYSTEM OF PARTICLES

- We consider a system consisting of \boldsymbol{n} particles
- One can treat individual particles, as before; i.e.,one can draw FBD for each particle, define a coordinate system and obtain an expression of the absolute acceleration for the particle. One can then use Newton's second law and proceed to get \boldsymbol{n} second-order coupled ODEs.
- Focus here is on overall motion of the systemalso a precursor to rigid body dynamics.

4.1 Equations of Motion:

Consider a system with:

- n particles
- masses - m_{i}
- positions - \underline{r}_{i}

There are two types
of forces acting:

- External forces - $\underline{F}_{\mathrm{i}} ; \mathrm{X}$
- Internal forces - f_{ij}

$\underline{f}_{i j}$ - force on the $i^{\text {th }}$ particle due to its interaction with the $j^{\text {th }}$ particle
- Newton's 3rd law $\rightarrow \underline{f}_{i j}=-\underline{f}_{j i}$

(internal forces are equal and opposite)

Also

$$
\underline{f}_{i j}=0 \text { when } i=j, i . e . \underline{f}_{i i}=0
$$

- Newton's 2nd law for $i^{\text {th }}$ particle:

$$
m_{i} \ddot{\underline{r}}_{i}=\underline{F}_{i}+\sum_{j=1}^{n} \underline{f}_{i j}, i=1,2,3, \ldots, n
$$

Now, for 3-dimensional motions, the position of each particle (in Cartesian coordinates) is:

$$
\underline{r}_{i}=x_{i} \underline{i}+y_{i} \underline{j}+z_{i} \underline{k}, \quad i=1,2,3, \ldots, n
$$

Thus, each equation in Newton's second law has 3 scalar second-order ordinary diff. equations. $\rightarrow 3 n$ scalar second-order o.d.e.'s for the system
In order to solve for the motion, one needs to know:

- external forces \underline{F}_{i} on each of the particles
- nature of internal forces $\underline{f}_{\mathrm{ij}}$
e.g., Newton's law of gravitation:

$$
f_{i j}=G \frac{m_{i} m_{j}}{\left|\underline{r}_{j}-\underline{r}_{i}\right|^{2}} \frac{\left(\underline{r}_{j}-\underline{r}_{i}\right)}{\left|\underline{r}_{j}-\underline{r}_{i}\right|}
$$

$$
\text { or, } \underline{f}_{i j}=-G m_{i} m_{j}\left(\underline{r}_{i}-\underline{r}_{j}\right) /\left|\underline{r}_{j}-\underline{r}_{i}\right|^{3}
$$

We also need:

- initial conditions: $\underline{r}_{i}(0), \dot{\underline{r}}_{i}(0), i=1,2, \ldots, n$

The general solutions to these nonlinear ODEs are unknown; they are difficult to solve except for in some very simple cases and small n.

Suppose we would like to get overall motion of the system, not those of individual particles. Adding the n equations:

$$
\sum_{i=1}^{n} m_{i} \ddot{\underline{r}}_{i}=\sum_{i=1}^{n} \underline{F}_{i}+\sum_{i=1}^{n} \sum_{j=1}^{n} \underline{f}_{i j}
$$

Now, $\sum_{i=1}^{n} \sum_{j=1}^{n} f_{i j}=0$ (net interaction force is zero)

- $m=\sum_{i=1}^{n} m_{i} \quad$ - total mass
- $m \underline{r}_{C}(t)=\sum_{i=1}^{n} m_{i} \underline{r}_{i}(t) \begin{aligned} & \text { - defines center of mass; } \\ & \text { note that it is a function of }\end{aligned}$ time since the particles move

Thus, addition of Eqns. $\rightarrow \quad \sum_{i=1}^{n} \underline{F}_{i}=\sum_{i=1}^{n} m_{i} \ddot{\underline{r}}_{i}=m \ddot{\underline{r}}_{C}$

- Let $\underline{F} \equiv \sum_{i=1}^{n} \underline{F}_{i} \quad$ - total external force
- $\underline{F} \equiv \sum_{i=1}^{n} \underline{F}_{i}=m \ddot{\underline{r}}_{C}$

Equation of motion for the center of mass

\rightarrow Internal forces do not affect the motion of the center of mass.

4.2 Work and Kinetic Energy

- The motion of individual particle is defined by

$$
m_{i} \ddot{\underline{r}}_{i}=\underline{F}_{i}+\sum_{j=1}^{n} \underline{f}_{i j}, i=1,2,3, \ldots, n
$$

- The motion of center of mass \mathbf{C} is defined by

$$
\underline{F} \equiv \sum_{i=1}^{n} \underline{F}_{i}=m \ddot{\underline{r}}_{C}
$$

where the total mass is $m=\sum_{i=1}^{n} m_{i}$

Consider a motion of the system. The initial state is A, and the final state is B. Let A_{C} and B_{C} denote the positions of the CM.

- Now, for the CM

$$
\underline{F} \equiv m \ddot{\underline{\ddot{q}}}_{C}
$$

Note that $\int_{\underline{F}}^{B_{C}} \bullet d \underline{r}_{C}$ is only the work done by external forces, and it is related to the change in translational kinetic energy associated with the CM

- Let $W_{i} \equiv$ work done on the $i^{\text {th }}$ particle by all the forces acting on it in moving from A_{i} to B_{i}

$$
W_{i}=\int_{A_{i}}^{B_{i}}\left(\underline{F}_{i}+\sum_{j=1}^{n} \underline{f}_{i j}\right) \bullet d \underline{r}_{i}
$$

Now: $\underline{r}_{i}=\underline{r}_{C}+\underline{\rho}_{i}$
where $\underline{\rho}_{i}$ - position of $\mathrm{i}^{\text {th }}$ particle relative to the CM of the system

- Total work done=sum of the work done on all particles: $W=\sum_{i=1}^{n} W_{i}$
$\rightarrow W=\sum_{i=1}^{n} \int_{A_{i}}^{B i}\left(\underline{F}_{i}+\sum_{j=1}^{n} \underline{f}_{i j}\right) \bullet\left(d \underline{r}_{C}+d \underline{\rho}_{i}\right)$
Now, $\sum_{i=1}^{n} \int_{A_{i}}^{B_{i}}\left(\underline{F}_{i}+\sum_{j=1}^{n} f_{i j}\right) \bullet d \underline{r}_{C}=\int_{A_{C}}^{B_{C}}\left(\sum_{i=1}^{n} \underline{F}_{i}+\sum_{i=1}^{n} \sum_{j=1}^{n} f_{i j}\right) \bullet d \underline{r}_{C}$

$$
\rightarrow W=\int_{A_{C}}^{B_{C}} \underline{F} \bullet d \underline{r}_{C}+\sum_{i=1}^{n} \int_{A_{i}}^{B_{i}}\left(\underline{F}_{i}+\sum_{j=1}^{n} \underline{f}_{i j}\right) \bullet d \underline{\rho}_{i}
$$

work done by
total ext. forces through the displ. of the CM
summation of the work done on all the particles through their displacements relative to the CM

- For each particle, the work done is:

$$
W_{i}=\left.\frac{1}{2} m_{i} \dot{\underline{r}}_{i} \bullet \dot{\underline{r}}_{i}\right|_{A_{i}} ^{B_{i}}=\left.\frac{1}{2} m_{i}\left(\underline{\underline{\dot{r}}}_{C}+\underline{\dot{\rho}}_{i}\right) \bullet\left(\underline{\underline{r}}_{C}+\underline{\dot{\rho}}_{i}\right)\right|_{A_{i}} ^{B_{i}}
$$

$$
\begin{aligned}
& \rightarrow W=\sum_{i=1}^{n} W_{i}=\left.m \dot{\underline{r}}_{C} \bullet \dot{\underline{\dot{r}}}_{C}\right|_{A_{C}} ^{B_{C}} / 2+\left.\underline{\underline{\dot{r}}}_{C} \bullet \sum_{i=1}^{n} m_{i} \underline{\underline{i}}_{i}\right|_{A_{i}} ^{B_{i}} \\
& +\left.\sum_{i=1}^{n} m_{i} \underline{\dot{p}}_{i} \bullet \underline{\dot{\hat{p}}}_{i}\right|_{A_{i}} ^{B_{i}} / 2 \\
& \text { Now, } \quad \sum_{i=1}^{n} m_{i} \underline{\rho}_{i}=0 \rightarrow \sum_{i=1}^{n} m_{i} \underline{\underline{\rho}}_{i}=0 \\
& \rightarrow W=\left.m \dot{\underline{r}}_{C} \bullet \dot{\underline{\dot{r}}}_{C}\right|_{A_{C}} ^{B_{C}} / 2+\left.\sum_{i=1}^{n} m_{i} \dot{\dot{\rho}}_{i} \bullet \underline{\dot{\dot{p}}}_{i}\right|_{A_{i}} ^{B_{i}} / 2 \\
& \equiv \mathrm{~T}_{\mathrm{B}}-\mathrm{T}_{\mathrm{A}} \text { - the sum of increase/change in } \\
& \text { KE of the system. }
\end{aligned}
$$

$$
W_{A \rightarrow B}=T_{B}-T_{A}
$$

work-energy principle for the system of particles

T $=$ K.E. at any instant

$$
=m v_{C}^{2} / 2+\sum_{i=1}^{n} m_{i} \underline{\dot{\rho}}_{i} \bullet \dot{\underline{\rho}}_{i} / 2
$$

Recalling the $\begin{gathered}i=1 \\ \text { work-energy principle for the } \\ C M\end{gathered}$

$$
\rightarrow \sum_{i=1}^{n} \int_{A_{i}}^{B_{i}}\left(\underline{F}_{i}+\sum_{j=1}^{n} \underline{f}_{i j}\right) \bullet d \underline{\rho}_{i}=\left.\sum_{i=1}^{n} m_{i} \underline{\dot{\rho}}_{i} \bullet \underline{\dot{\rho}}_{i}\right|_{A_{i}} ^{B_{i}} / 2
$$

Work done by all forces (external as well as internal) in relative motion $\equiv \mathbf{K E}$ for relative motion

Important: In general, internal forces $\underline{f}_{i j}$ do work in any motion of the system. Sometimes, net work (that on the whole system) may be zero even though there is work done on individual particles.

Ex: Consider the force in a spring connecting two moving bodies - there is net work done by the spring force evaluated by potential function ϕ_{sp}.

Ex 1: Consider two particles connected by

 a massless rigid (inextensible) rod, and acted upon by a force $\underline{\boldsymbol{F}}$.

FBDs for individual particles are:

Note: $\underline{f}_{12}=-\underline{f}_{21}$

- Work done in relative motion by internal forces:

$$
d W=\underline{f}_{12} \bullet d \underline{\rho}_{1}+\underline{f}_{21} \bullet d \underline{\rho}_{2}=\underline{f}_{12} \bullet\left(d \underline{\rho}_{1}-d \underline{\rho}_{2}\right)
$$

- constraint $\left|\underline{r}_{12}\right|^{2}=\left(\underline{\rho}_{2}-\underline{\rho}_{1}\right) \bullet\left(\underline{\rho}_{2}-\underline{\rho}_{1}\right)=l^{2}$
- Differentiate:
$d\left(\left|\underline{r}_{12}\right|^{2}\right)=\left(\underline{\rho}_{2}-\underline{\rho}_{1}\right) \bullet\left(d \underline{\rho}_{2}-d \underline{\rho}_{1}\right)=0$
Now:

$$
\underline{f}_{12}=\left|\underline{f}_{12}\right|\left(\underline{\rho}_{1}-\underline{\rho}_{2}\right) /\left|\underline{\rho}_{1}-\underline{\rho}_{2}\right|
$$

Thus, $\underline{f}_{12} \bullet\left(d \underline{\rho}_{1}-d \underline{\rho}_{2}\right)=0$

Ex 2:

Consider the system
 shown here. A slider moves on a rough guide, and a pendulum is attached to it at A.

- $\mathrm{m}_{1}, \mathrm{~m}_{2}$ connected by a massless rigid link.
- Coulomb friction between m_{1} and the horizontal guide. Force P acts on the block A.

The FBDs are:

The positions of the two particles can now be defined: $\underline{r}_{1}(t)=x(t) \underline{i}$

$$
\underline{r}_{2}(t)=\{x(t)+l \sin \theta\} \underline{i}-l \cos \theta \underline{j}
$$

The equations of motion for the individual particles are:

$\underline{\underline{m_{1}}}: m_{1} \ddot{x} \underline{i}=(P-f+T \sin \theta) \underline{i}+\left(N-m_{1} g-T \cos \theta\right) \underline{j}$ where $f=\mu N(\operatorname{sgn}(\dot{x}))$
$\underline{\underline{m_{2}}}: m_{2}\left\{\left(\ddot{x}+l \ddot{\theta} \cos \theta-l \dot{\theta}^{2} \sin \theta\right) \underline{i}\right.$ $\left.+\left(l \ddot{\theta} \sin \theta+l \dot{\theta}^{2} \cos \theta\right) \underline{j}\right\}=-T \sin \theta \underline{i}$

$$
+\left(T \cos \theta-m_{2} g\right) \underline{j}
$$

- Try to write the equation of motion for the CM of the system.

4.3 Conservation of Mechanical Energy

- Suppose that the External forces are conservative, that is, $\underline{F} \equiv \sum_{i=1} F_{i}$ are
conservative.

$$
\rightarrow E_{C}=T_{C}+V_{C} \quad \text { for the CM of the system }
$$

\rightarrow Total energy conserved for motion of the CM

- Suppose that Internal forces also conservative:
$\rightarrow \mathbf{E}=\mathbf{T}+\mathbf{V}$
Total energy conserved for the whole system.

Ex. 3 (4.2): Consider the system shown.

- m_{1} and m_{2} connected by a massless spring.
- A constant force F applied to m_{1} at $\mathrm{t}=\mathbf{0}$.
- No friction between the floor and the blocks

Find: $x_{1}(t)$; when masses are equal : $m_{1}=m_{2}=\bar{m}$
IC $(\mathbf{t}=\mathbf{0}), x_{1}=x_{2}=\dot{x}_{1}=\dot{x}_{2}=0$; spring unstretched

Motion of the CM:

$$
\underline{r}_{C}=\left(\sum m_{i} \underline{r}_{i}\right) / m \rightarrow x_{C}=\left(x_{1}+x_{2}\right) / 2
$$

Newton's Second law :

$$
\sum F_{x}=F=m \ddot{x}_{C} \quad\left(m=m_{1}+m_{2}=2 \bar{m}\right)
$$

$\rightarrow \quad \ddot{x}_{C}=F / 2 \bar{m} ; \quad$ Init.Conds. are : $x_{C}(0)=\dot{x}_{C}=0$
$\rightarrow \quad \dot{x}_{C}=(F / 2 \bar{m}) t ; \quad x_{C}=(F / 2 \bar{m}) t^{2} / 2$
Motion of the block m_{1} :
FBD:

Newton's law for block $\mathbf{m}_{\mathbf{1}}$:

$\sum F_{x}=F+k\left(x_{2}-x_{1}\right)=\bar{m} \ddot{x}_{1} ;$ ICs. $: x_{C}(0)=\dot{x}_{C}=0$
Also, note that $\quad x_{2}=2 x_{C}-x_{1}$

$$
\begin{equation*}
\rightarrow F-2 k\left(x_{1}-x_{C}\right)=\bar{m} \ddot{x}_{1} \tag{1}
\end{equation*}
$$

Also: $\quad \bar{m} \ddot{x}_{C}=F / 2$
(1) $-(2) \rightarrow \overline{\bar{m}}\left(\ddot{x}_{1}-\ddot{x}_{C}\right)+2 k\left(x_{1}-x_{C}\right)=F / 2$

ICs: $\quad\left[x_{C}(0)-x_{1}(0)\right]=\left[\dot{x}_{1}(0)-\dot{x}_{C}(0)\right]=0$
Soln: $\left(x_{C}-x_{1}\right)=F\{1-\cos \sqrt{2 k / \bar{m}}\} / 4 k$
(Harmonic oscillation)

Aside (steps involved in the solution):

The eqn.is: $\bar{m} \ddot{y}+2 k y=F / 2$ where $y=\left(x_{1}-x_{C}\right)$
The solution is $\quad y(t)=y_{h}(t)+y_{p}(t)$
$\underline{\underline{y_{p}}}: 2 k y_{p}=F / 2 \rightarrow y_{p}=F / 4 k$
$y_{h}: \quad y_{h}(t)=A \cos \omega_{n} t+B \sin \omega_{n} t$, where $\omega_{n}=\sqrt{2 k / \bar{m}}$
$y(0)=0 \rightarrow A+F / 4 k=0 \rightarrow A=-F / 4 k$
$\dot{y}(0)=0 \rightarrow B \omega_{n}=0 \rightarrow B=0$
Soln: $y(t)=F\left\{1-\cos \omega_{n} t\right\} / 4 k$
(Harmonic oscillation)

Or $x_{1}(t)=(F / 4 \bar{m}) t^{2}+F\{1-\cos \sqrt{2 k / \bar{m}} t\} / 4 k$
Energy considerations: (verification)
Recall that $\dot{x}_{C}=v_{C}=(F / 2 \bar{m}) t$
\rightarrow K.E.of $\mathrm{CM}=T_{C}=(2 \bar{m}) v_{C}^{2} / 2=\left(F^{2} / 4 \bar{m}\right) t^{2}$
Work done on $\mathrm{CM}=W_{C}=F x_{C}=F(F / 4 \bar{m}) t^{2}$

(for a constant force)

\rightarrow Work done on $\mathrm{CM}\left(\mathrm{W}_{\mathrm{C}}\right)=$ change in K.E. of CM

Now, consider for the whole system:

Total KE:

$$
T=\left[(2 \bar{m}) \dot{x}_{C}^{2}+\bar{m}\left\{\left(\dot{x}_{1}-\dot{x}_{C}\right)^{2}+\left(\dot{x}_{2}-\dot{x}_{C}\right)^{2}\right\}\right] / 2
$$

or $T=\left(F^{2} / 4 \bar{m}\right) t^{2}+\left(F^{2} / 8 k\right) \sin ^{2}(\sqrt{2 k / \bar{m}} t)$
Potential Energy:

$$
V=k\left(x_{1}-x_{2}\right)^{2} / 2=2 k\left(x_{1}-x_{C}\right)^{2}
$$

(Work done by internal forces)
or $\quad V=\left(F^{2} / 8 k\right)\{1-\cos (\sqrt{2 k / \bar{m}} t)\}^{2}$
$\rightarrow T+V=E=\left(F^{2} / 4 \bar{m}\right) t^{2}+\left(F^{2} / 4 k\right)\{1-\cos (\sqrt{2 k / \bar{m}})\}$

$\mathrm{W}=$ work done by the external force

$F x_{1}=\left(F^{2} / 4 \bar{m}\right) t^{2}+\left(F^{2} / 4 k\right)\{1-\cos (\sqrt{2 k / \bar{m}} t)\}$
$\rightarrow W=T+V-(0+0)$
Work done by all forces (external and internal)
$=$ (final total energy) - (initial total energy)

4.4 Linear Impulse and Momentum

Let, $\hat{\underline{F}} \equiv \int_{t_{1}}^{t_{2}} \underline{F}(\tau) d \tau$ - lin. impulse of external forces
Considering Newton's laws for motion of CM:
$\underline{\hat{F}} \equiv \int_{t_{1}}^{t_{2}} \underline{F}(\tau) d \tau=\int_{t_{1}}^{t_{2}} m \ddot{\underline{r}}_{C}(\tau) d \tau=m\left(\underline{v}_{C 2}-\underline{v}_{C 1}\right)$
Let

$$
\underline{p}(t)=\sum_{i=1}^{t} m_{i} \underline{v}_{i}(t)=\underset{\substack{m \\ v_{C}}}{\text { momentum of the }}
$$ system at a given instant

Then

$$
\hat{\underline{F}}=m\left(\underline{v}_{C 2}-\underline{v}_{C 1}\right)=\underline{p}\left(t_{2}\right)-\underline{p}\left(t_{1}\right)
$$

4.5 Angular Momentum:

The key point to consider here is the point about which the moment can be taken.

- Moment about a fixed reference point:

$$
\underline{H}_{i O}=\underline{r}_{i} \times m_{i} \dot{\underline{r}}_{i}
$$

(angular momentum of the ith particle about point O)

Total angular momentum of the system:

$\underline{H}_{O}=\sum_{i=1}^{n} \underline{H}_{i o}=\sum_{i=1}^{n} \underline{r}_{i} \times m_{i} \underline{\underline{r}}_{i}$
Rate of change of angular momentum :
$\dot{\underline{H}}_{o}=\sum_{i=1}^{n} \dot{\underline{r}}_{i} \times m_{i} \dot{\underline{r}}_{i}+\sum_{i=1}^{n} \underline{r}_{i} \times m_{i} \ddot{\underline{r}}_{i}=\sum_{i=1}^{n} \underline{r}_{i} \times m_{i} \ddot{\underline{r}}_{i}$
Now, using Newton'second law for a particle :
$m_{i} \ddot{\underline{r}}_{i}=\underline{F}_{i}+\sum_{j=1}^{n} \underline{f}_{i j} \rightarrow \dot{\underline{H}}_{o}=\sum_{i=1}^{n} \underline{r}_{i} \times\left(\underline{F}_{i}+\sum_{j=1}^{n} f_{i j}\right)$
or

$$
\underline{\dot{H}}_{o}=\sum_{i=1}^{n} \underline{r}_{i} \times \underline{F}_{i}=\underline{M}_{o}
$$

- Reference point as the center of mass:

Let $\underline{r}_{i}=\underline{r}_{C}+\underline{\rho}_{i}$
$\rightarrow \underline{H}_{O}=\sum_{i=1}^{n} m_{i}\left(\underline{r}_{C}+\underline{\rho}_{i}\right) \times\left(\underline{\dot{r}}_{C}+\underline{\dot{\rho}}_{i}\right)$
$=m \underline{r}_{C} \times \underline{\underline{r}}_{C}+\underline{r}_{C} \times \sum_{i=1}^{n} m_{i} \dot{\underline{\dot{p}}}_{i}+\left(\sum_{i=1}^{n} m_{i} \underline{\rho}_{i}\right) \times \underline{\dot{r}}_{C}$ $+\sum_{i=1}^{n} m_{i} \underline{\rho}_{i} \times \underline{\dot{p}}_{i}$
$\rightarrow \underline{H}_{O}=m \underline{r}_{C} \times \underline{\underline{r}}_{C}+\sum_{i=1}^{n} m_{i} \underline{\rho}_{i} \times \underline{\dot{\rho}}_{i}$

Thus, $\underline{H}_{O}=\underline{r}_{C} \times m \underline{\underline{r}}_{C}+\underline{H}_{C}$
where $\underline{H}_{C}=\sum_{i=1}^{n} \underline{\rho}_{i} \times m_{i} \underline{\dot{\rho}}_{i}$
(Ang. momentum with respect to the CM, as viewed by a nonrotating observer moving with the CM)
Now, differentiating:

$$
\underline{\dot{H}}_{o}=\underbrace{\underline{r}_{C} \times m \ddot{\underline{r}}_{C}}_{\underline{r}_{C} \times \underline{F}}+\underbrace{\sum_{i=1}^{n} \underline{\rho}_{i} \times m_{i} \ddot{\rho}_{i}}_{\sum_{i=1}^{n} \rho_{i} \times \underline{E}_{i}}
$$

$\rightarrow \underline{M}_{O}=\underline{r}_{C} \times \underline{F}+\underbrace{\sum_{i=1}^{n} \underline{\rho}_{i} \times \underline{F}_{i}}_{\underline{M}_{C}}=\underline{\dot{H}}_{C}+\underline{r}_{C} \times m \underline{\ddot{r}}_{C}$
Now $\quad \underline{r}_{C} \times \underline{F}=\underline{r}_{C} \times m \ddot{\underline{r}}_{C} \quad$ (for motion of CM)
$\rightarrow \underline{M}_{C}=\underline{\dot{H}}_{C}=\sum_{i=1}^{n} \underline{\rho}_{i} \times m_{i} \ddot{\ddot{\rho}}_{i}$
Reviewing: $\quad \underline{M}_{O}=\underline{\dot{H}}_{O}$ (about fixed pointO)

$$
\left.\underline{M}_{O}=\underline{\dot{H}}_{O} \quad \text { (about C, the CM }\right)
$$

- (very convenient for rigid bodies)
- About an arbitrary reference point P:

Let P be an arbitrary point (could be moving). Let $\underline{r}_{i}=\underline{r}_{P}+\underline{\rho}_{i}$ and $\underline{r}_{C}=\underline{r}_{P}+\underline{\rho}_{C}$

Then, one can show that

And $\underline{M}_{P}=\underline{\rho}_{C} \times m \underline{\underline{r}}_{P}+\underline{\dot{H}}_{P}$
\rightarrow Choosing an arbitrary point for moments of forces results in an additional term in the moment equation.

- If \mathbf{P} is a fixed point $\rightarrow \underline{M}_{P}=\underline{\dot{H}}_{P} \quad\left(\ddot{\dot{r}}_{P}=0\right)$
- If \mathbf{P} is the center of mass

$$
\rightarrow \underline{M}_{P}=\underline{\dot{H}}_{P} \quad\left(\underline{\rho}_{C}=0\right)
$$

- If \mathbf{P} is such that ${\underset{\underline{\ddot{g}}}{P}}$ and $\underline{\rho}_{C}$ are parallel throughout the motion $\rightarrow \underline{M}_{P}=\underline{\dot{H}}_{P}$
- Computation of Kinetic energy using P as a reference point:
The kinetic energy is: $T=\sum_{i=1}^{n} m_{i} \dot{\underline{r}}_{i} \bullet \dot{\underline{r}}_{i} / 2$
Now, $\quad \underline{r}_{i}=\underline{r}_{P}+\underline{\rho}_{i}, \quad \underline{\underline{r}}_{i}=\underline{\underline{r}}_{P}+\dot{\dot{\rho}}_{i} \quad \rightarrow$

$$
T=\left[m\left|\dot{\underline{\dot{r}}}_{P}\right|^{2}+\sum_{i=1}^{n} m_{i}\left|\underline{\dot{\rho}}_{i}\right|^{2}+2 \underline{\underline{\dot{r}}}_{P} \bullet m \underline{\dot{\rho}}_{C}\right] / 2
$$

If $P=C: \quad T=\left[m\left|\underline{\dot{r}}_{C}\right|^{2}+\sum_{i=1}^{n} m_{i}\left|\underline{\dot{\rho}}_{i}\right|^{2}\right] / 2 \quad$ (as before)

Ex. 4 (4.7):

Consider a particle traveling at a speed ' v ' to the right. It strikes a stationary dumbbell (two particles connected by a massless rigid rod). The masses are:

$$
\mathrm{m}_{1}=\mathrm{m}_{2}=\mathrm{m}_{3}=\mathrm{m}
$$

Assumption:

- Perfectly elastic impact in $\mathrm{m}_{1}, \mathrm{~m}_{2}(\boldsymbol{e}=\mathbf{1})$.

Find: motion of the particles just after impact.

FBDs:

Observe that during impact:

- Net force on the whole system = 0 \rightarrow linear momentum conserved for the system
- Resultant moment about O (a fixed point) $=0$ \rightarrow angular momentum about O conserved for the system

Set up of the problem:
 Motion before impact: $\underline{v}_{1}=v \underline{i} ; \quad \underline{v}_{2}=\underline{v}_{3}=0$

Motion after impact: It is convenient to think in terms of the motion of the CM , and rotational motion about CM. Use the triad $\left(\underline{e}_{t}, \underline{e}_{a}, \underline{e}_{b}\right)$ to define the motion of the CM and the particles.

Expressing velocities

 in terms of $\left(\underline{e}_{t}, \underline{e}_{a}, \underline{e}_{b}\right)$$$
\begin{aligned}
\underline{v}_{C} & =v_{a} \underline{e}_{a}+v_{t} \underline{e}_{t} \\
\underline{v}_{2} & =\underline{v}_{C}+\omega \underline{k} \times \underline{r}_{C O} \\
& =\underline{v}_{C}+\omega \underline{k} \times\left(-l \underline{e}_{a} / 2\right) \\
& =\underline{v}_{C}+\left(\omega l \underline{e}_{t} / 2\right)
\end{aligned}
$$

$\rightarrow \underline{v}_{2}=v_{a} \underline{e}_{a}+\left(v_{t}+\omega l / 2\right) \underline{e}_{t}$
Similarly, $\underline{v}_{3}=\underline{v}_{C}+\omega \underline{k} \times \underline{r}_{C 3}=\underline{v}_{C}-(\omega l / 2) \underline{e}_{t}$
$\rightarrow \underline{v}_{3}=v_{a} \underline{e}_{a}+\left(v_{t}-\omega l / 2\right) \underline{e}_{t}$
linear momentum conserved for the system:

$$
m v \underline{i}=m v_{1} \underline{i}+m \underline{v}_{2}+m \underline{v}_{3}
$$

$$
\begin{equation*}
\text { or } \quad v \underline{i}=v_{1} \underline{i}+2 v_{a} \underline{e}_{a}+2 v_{t} \underline{e}_{t} \tag{1}
\end{equation*}
$$

(a vector equation $\rightarrow \mathbf{2}$ scalar equations)

angular momentum conserved for the system:

$$
\begin{align*}
0 & =\underline{r}_{o 3} \times \underline{v}_{3}=l \underline{e}_{a} \times\left[v_{a} \underline{e}_{a}+\left(v_{t}-\omega l / 2\right) \underline{e}_{t}\right] \\
& =-l\left(v_{t}-\omega l / 2\right) \underline{k} \rightarrow v_{t}=\omega l / 2 \tag{2}
\end{align*}
$$

Note: The vectors \underline{e}_{t} and \underline{e}_{a} can be expressed in terms of the unit vectors \underline{i} and \boldsymbol{i} as:

$$
\begin{aligned}
& \underline{e}_{t}=\underline{i} \cos 45^{\circ}-\underline{j} \sin 45^{\circ}=(\underline{i}-\underline{j}) / \sqrt{2} \\
& \underline{e}_{a}=\underline{i} \cos 45^{\circ}+\underline{j} \sin 45^{\circ}=(\underline{i}+\underline{j}) / \sqrt{2}
\end{aligned}
$$

\rightarrow In equations (1) and (2), $v_{1}, v_{t}, v_{a}, \omega$ are unknowns but there are only 3 equations. Thus one more relation is required.

- coefficient of restitution:

Aside: central impact: Consider two particles A and B that collide with each other. The geometry and definitions of terms are:
latine of impact
FBDs: $\quad \mathrm{A} @ \frac{\hat{F}}{\hat{F}} \xrightarrow{\mathrm{~B}} \longrightarrow \mathrm{O} \longrightarrow \begin{aligned} & \text { No y-comp of } \\ & \text { force }\end{aligned}$

Let $\underline{v}_{A}=v_{A x} \underline{i}+v_{A y} \underline{j}$ and $\underline{v}_{B}=v_{B x} \underline{i}+v_{B y} \underline{j}$ be velocities; $\underline{v}_{A 1}, \underline{v}_{B 1}$ before, and $\underline{v}_{A 2}, \underline{v}_{B 2}$ after. The coefficient of restitution is then defined as: the ration of the relative velocity after impact to the relative velocity before impact, for velocities along the line of impact:

$$
e=-\frac{\left(v_{B x 2}-v_{A x 2}\right)}{\left(v_{B x 1}-v_{A x 1}\right)}=-\frac{\left(v_{B x}-v_{A x}\right)_{2}}{\left(v_{B x}-v_{A x}\right)_{1}}
$$

- For the system at hand, elastic impact: $\mathbf{e}=1$. Also,

$$
\begin{align*}
& v_{A x 1}=v, v_{A y 1}=v_{A y 2}=0, v_{B x 1}=0, v_{A x 2}=v_{1}, \\
& v_{B x 2}=\left(v_{a}+2 v_{t}\right) / \sqrt{2}, v_{B y 1}=v_{B y 2}=0 . \text { Thus } \\
& e=1=-\frac{\left(\left(v_{a}+2 v_{t}\right) / \sqrt{2}-v_{1}\right)}{(0-v)} \\
& \rightarrow \quad v=v_{a} / \sqrt{2}+\sqrt{2} v_{t}-v_{1} \tag{3}\\
& \text { Solving (1),(2), and (3) } \rightarrow
\end{align*}
$$

$$
v_{a}=(2 \sqrt{2} / 7) v, v_{t}=(2 \sqrt{2} / 7) v, v_{1}=-v / 7
$$

Ex. (Problem 3.19)

Consider a cylinder rotating at a constant rate Ω.

- A thin, flexible and massless rope goes around the drum.
- There is no gravity, and the rope does not
 slip relative to the drum ;
At $\mathrm{t}=0, \ell(0)=0, \dot{\ell}(0)=\mathrm{r} \Omega$
Find: Tension in the rope as a function of time.

Setup:

n o゙
Consider a triad $\left(\underline{e}_{t}, \underline{e}_{n}, \underline{e}_{b}\right)$
for the moving reference
frame \mathfrak{I}, with coordinate system located atO'.

- Let $\underline{\omega}$ be angular velocity of the moving reference frame or triad.
- The fixed reference frame is \mathfrak{R} with origin \mathbf{O}.

Schematic:

$\left(\underline{e}_{t}, \underline{e}_{n}, \underline{e}_{b}\right)$ - triad for moving coordinate system Let $\underline{\omega}$ be angular velocity of the moving frame.

- Use the general formulation to express $\mathbf{a}_{\mathbf{p}}$: $\underline{a}_{P}=\underline{\ddot{R}}+\underline{\dot{\omega}} \times \underline{\rho}+\underline{\omega} \times(\underline{\omega} \times \underline{\rho})+(\underline{\ddot{\rho}})_{r}+2 \underline{\omega} \times(\underline{\dot{\rho}})_{r}$ Let us now consider the various terms:

$$
\begin{aligned}
& \underline{\omega}=(\Omega+\dot{\theta}) e_{b} \text { and } l=r \theta \\
& \rightarrow \dot{i}=r \dot{\theta} \rightarrow \dot{\theta}=\dot{l} / r
\end{aligned}
$$

Position : $\underline{R}=r \underline{e}_{t}, \quad \underline{\dot{R}}=r \frac{d \underline{e}_{t}}{d t}=r \underline{\omega} \times \underline{e}_{t}$
$\rightarrow \underline{\dot{R}}=r(\Omega+\dot{l} / r) \underline{e}_{b} \times \underline{e}_{t}=r(\Omega+\dot{l} / r) \underline{e}_{n}$
Also $\underline{\ddot{R}}=r(\ddot{l} / r) \underline{e}_{n}+r(\Omega+\dot{l} / r) \underline{\omega} \times \underline{e}_{n}$

Thus $\underline{\ddot{R}}=(\ddot{l}) \underline{e}_{n}-r(\Omega+\dot{l} / r)^{2} \underline{e}_{t}$
Now, $\underline{\rho}=-l \underline{e}_{n} \rightarrow(\underline{\dot{\rho}})_{r}=-\dot{l} \underline{e}_{n} \rightarrow(\underline{\ddot{\rho}})_{r}=-\ddot{l} \underline{e}_{n}$
Also $\quad \underline{\dot{\omega}} \times \underline{\rho}=(\ddot{l} / r) \underline{e}_{b} \times\left(-l \underline{e}_{n}\right)=(\ddot{l} / r) \underline{e}_{t}$

$$
\begin{aligned}
& \underline{\omega} \times(\underline{\omega} \times \underline{\rho})=l(\Omega+i / r)^{2} \underline{e}_{n} \\
& 2 \underline{\omega} \times(\underline{\dot{\rho}})_{r}=2 \dot{l}(\Omega+\dot{l} / r) \underline{e}_{t}
\end{aligned}
$$

$\rightarrow \begin{gathered}\underline{a}_{P}=\left[-r(\Omega+\dot{l} / r)^{2}+\ddot{l} / r+2 \dot{l}(\Omega+\dot{l} / r)\right] \underline{e}_{t} \\ \\ +l(\Omega+\dot{l} / r)^{2} \underline{e}_{n}\end{gathered}$
Imp: The is acceleration relative to \mathfrak{R}

Now, applying Newton's Second Law:

$$
\underline{F}=m \underline{a} \rightarrow T \underline{e}_{n}=m \underline{a}
$$

$$
\underline{e_{\underline{e}}}:-r(\Omega+\dot{l} / r)^{2}+\ddot{l} / r+2 \dot{l}(\Omega+\dot{l} / r)=0
$$

$$
\text { or } \quad \ddot{l}+\dot{l}^{2}-r^{2} \Omega^{2}=0
$$

$$
\rightarrow \quad d(l \dot{l}) / d t=r^{2} \Omega^{2} \quad \rightarrow d(l \dot{l})=r^{2} \Omega^{2} d t
$$

Initial conditions: $\ell(0)=0, \dot{\ell}(0)=\mathrm{r} \Omega$
Integration \rightarrow

$$
\dot{\ell \ell}=r^{2} \Omega^{2} t
$$

Integrating once again,

$\int_{0}^{l} \ell d \ell=r^{2} \Omega^{2} \int_{0}^{t} \tau d \tau \rightarrow l^{2}=r^{2} \Omega^{2} t^{2} \rightarrow l=r \Omega t$
$\underline{e}_{n}: T=m l(\Omega+i / r)^{2}=4 m l \Omega^{2}$
\quad or $T=4 m r \Omega^{3} t$

