CHAPTER 4
DYNAMICS OF ASYSTEM OF PARTICLES

» \We consider a system consisting of n particles

* One can treat individual particles, as before;
l.e.,one can draw FBD for each particle,
define a coordinate system and obtain an
expression of the absolute acceleration for the
particle. One can then use Newton’s second
law and proceed to get n second-order
coupled ODEs.

* Focus here iIs on overall motion of the system-
also a precursor to rigid body dynamics.



4.1 Equations of Motion:
Consider a system with:
* N particles

* Masses -m;

* positions -r

There are two types

of forces acting:

 External forces -F; ;X

* Internal forces - f ; Y




fij - force on the i particle due to its
interaction with the j" particle

 Newton’s 3rd law — f, =—1,
(internal forces are equal and opposite)
Also  f, =0wheni=j,ie f;=0

« Newton’s 2nd law for i particle:

mi, =F+> f.| i=123....,n
=L




Now, for 3-dimensional motions, the position
of each particle (in Cartesian coordinates) is:
rr=xi1+yj+zk, 1=,23,...,n

Thus, each equation in Newton’s second law
has 3 scalar second-order ordinary diff.
equations. —» 3n scalar second-order o.d.e.’s
for the system

In order to solve for the motion, one needs to

Know:
- external forces F, on each of the particles

« nature of internal forces tij



e.g., Newton’s law of gravitation:
m;m j (Lj o L)

f. =G
_ 2
- ;-
3
or, iij :_Gmimj(L _Lj)/‘Lj _L‘
We also need: |
. initial conditions: Yi(0),X;(0),1=12,.... ,n

The general solutions to these nonlinear
ODEs are unknown; they are difficult to
solve except for in some very simple cases
and small n.



Suppose we would like to get overall motion of
the system, not those of individual particles.
Addlng the n equatlons

>mr =Y E Y,

1=l j=1

Now, ZZ f,; =0 (netinteraction force Is zero)

i=1 j=1
. — - total mass
m=>m
* mr.(t) = Z m.r.(t) - defines center of mass;

i=1 note that it is a function of
time since the particles move,



Thus, addition of Egns. — Z F. = Z m.r, =mr,
=1

=1

« Let E= Z F - total external force
=1
 [F=>» F. =mi.| Equation of motion for

=1 the center of mass

— Internal forces do not affect the motion of
the center of mass.



4.2 Work and Kinetic Energy

* The motion ofnindividual particle 1s defined by
mi, =F+> f,, i=123....,n

where the total mass ism= "> m,
1=1



Consider a motion of Z

the system. The initial e 5
state is A, and the final <{_Bc &
state is B. Let Acand B | . n
denote the positions of mC ,:
the CM. 0 ///[C \\\ m
* Now, for the CM . I,’A'
E = mfc X !
Y
Bc Be _
—> A{E odr. = A{mfc edr. = (mv; /2)‘%
» Work-energy statement for the CM



BC
Note that IE edr. Isonlythe work done by

external fo?&es, and it is related to the change

In translational kinetic energy associated with
the CM

 LetW; = work done on the i particle by all
the forces acting on it in moving fromA,; to B;

B .
W, = J‘(Eu "‘Z fij).dLi
A =1
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Now: r. =r ¢t P
where P - posmon of i particle relative to

~ the CM of the system

e Total work donne:sum of the work done on all
particles: w = ZWi

SW = Zj( +qu) (dre +dp,)

IlA1
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SW = jF-dr +Zj( +igj)-dg

=1 A
work done by summation of the
total ext. forces work done on all the
through the displ. particles through their
of the CM displacements relative
to the CM
» For each particle, the work done is:
1 " i
Wi:_miii.ii :_mi(£C+pi)'(£c+pi)
2 a2 - ~ |4
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SW =W =mrger S r2er 0 Y mp
i=1 =1

Now,

%

B;

+Zmipi pi| 12
=1 o - A

Zn:mi,_oi =0 > Zn:migi =0
=1 =1

W =mr_ ’fc‘iz /2+Zn:miéi °*p
i-1

B;

A

/2

=Tg—Ta- the sum of Increase/c

KE of the system.

nange In
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WA—)B — TB _TA

work-energy principle for
the system of particles

T = K.E. at any Instant
=mv; /2+ZmpI o 12
Recallmg the Work-energy principle for the CM:

_’Zj( +qu) dp = Zmp. p |/2

|1A

A

Work done by aII forces (external as well as
Internal) in relative motion = KE for relative

motion
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Important: In general, internal forces fij do
work In any motion of the system. Sometimes,

net work (that on the whole system) may be
zero even though there is work done on

Individual particles.

Ex: Consider the force in a spring
connecting two moving bodies - there Is
net work done by the spring force -
evaluated by potential function ¢, .
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Ex 1: Consider two particles connected by
a massless rigid (inextensible) rod, and
acted upon by aforceE. F

FBDs for individual « F
articles are: \‘\
P m, ‘C



* Work done In relative motion by internal
forces:

dW =1, edp + 1, edp,=1,e(dp —-dp,)
] 2
+ constraint |r,| =(p,—p)e(p,—p) =1’
 Differentiate:

d(‘ﬁlz‘z) = (/_02 _191) '(dEZ _d191) =0

Now:
112 = ‘112‘(81 _Ez)/‘gl _/_02‘

Thus, |T,,e(dp -dp,)=0
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Ex 2: Yo x — A /rough guide

: 5 m X
Consider the system” P — |

shown here. A slider

moves on a rough 1 |
guide, and a pendulum m
is attached to it at A. :

* My, M, connected by a massless rigid link.

 Coulomb friction between mjand the
horizontal guide. Force P acts on the block A.
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The FBDs are:

m,g
TGN
=1\ T\i
AT m,
N
N " Myg

The positions of the two particles can now
be defined: r, (t) = x(t)i

r,(t) ={x(t)+1sin6}1 —1cosb )
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The equations of motion for the individual
particles are:

m: mXi=(P-f+Tsind)i +(N-mg-Tcosb)]

where f = uN(sgn(x))
m,: m{(X+16cosd—16%sind)i
+(10sin@ +10% cos ) j}=-T sinOi
+(T cosé—-m,qg) ]

* Try to write the equation of motion for the
CM of the system.
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4.3 Conservation of Mechanical Energy

» Suppose that the External forces are
conservative, thatis, F=%F, are
conservative. i=1

— E. =T.+V.  for the CM of the system

—Total energy conserved for motion of the CM
« Suppose that Internal forces also conservative:
—>E=T+V

Total energy conserved for the whole system.
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Ex. 3 (4.2): Consider the system shown.

p— My VAAAATm, |

« m, and m, connected by a massless spring.

A constant force F applied to myatt = 0.

* No friction between the floor and the blocks
Find: X/(t); whenmassesareequal :m, =m, =m

IC (t=0), X, =X, =X =X, =0; spring
unstretched
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Motion of the CM:
e :(ZmiLi)/m = X =(X +X%,)/2

Newton's Second law :
Y F =F=m&, (m=m +m,=2m)
— X, =F/2m; Init.Conds. are:x.(0) =x. =0
— (% =(F/2m)t; |x.=(F/2m)t*/2
Motion of the block m,:
FBD:

X
K(X5- Xy)

F——1m
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Newton’s law for block m;:
Y F,=F+k(x,—x)=m%; 1Cs.:x. (0) =%, =0
Also,notethat  x, =2X. — X
—  F =2k(X, —X.) =mX D)

Also: mX. =F /2 (2)
(1) -(2) > |M(X, —X.)+2k(x, —X.)=F /2
ICs: [X:(0) = x,(0)] =[%,(0) =% (0)] =0
Soln: |(x. —x,) = Ffl—cos~/2k / m}/ 4k

(Harmonic oscillation)

24



Aside (steps involved in the solution):
Theegn.is: my+2ky=F/2 where y=(x,—X.)
Thesolutionis  y(t) =y, (t) +y,(t)

Y, 2ky,=F/2 — y =F/[4k

V. © Y. ()= Acose t+Bsine t, where @, =+/2k/m
y(0)=0 - A+F/4k=0 > A=-F/4k

y(0)=0 - Bw,=0 - B=0
Soln: |y(t) = F{1—-cosw,t}/ 4k

(Harmonic oscillation)
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Or |x (t) = (F / 4m)t? + F{l—cos~/2k / mt}/ 4k

Energy considerations: (verification)
Recall that x. =v. =(F /2m)t

— K.E.of CM =T, =(2m)v. /2 =(F*/4m)t*
Work doneon CM =W, = Fx. = F(F /4m)t?
(for a constant force)

— [Work done on CM (W, )=changein K.E.of CM
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Now, consider for the whole system:
Total KE:

T =[2m)%; +M{(% —Xc)* + (X, —*; )}/ 2
or T =(F?/4m)t? + (F2/8k)sin?(v/2k / mt)
Potential Energy:
V =K(X —X%,)*12=2k(X,— X.)’
(Work done by internal forces)
or V =(F?/8k){l—cos(~2k / mt)}?
> T+V =E =(F?/4m}t* + (F?/ 4k){l—cos(~/2k / mt)}
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W = work done by the external force
Fx, = (F?/4m)t? + (F?/4k){L—cos(v 2k / mt)}
- W=T+V —-(0+0)

Work done by all forces (external and internal)
= (final total energy) — (initial total energy)
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4.4 Linear Impulse and Momentum
t

Let F = IE(T)dT - lin. impulse of external forces

1

Cons1der1ng Newton s laws for motion of CM:
jF(r)dr— jmr (r)dz =m(Ve, —Ve,)

Let p(t) = lZml\/l(t) mv. - total linear
momentum of the
system at a given instant
Then

F=m(Ve, —Vei) = E(tz) - E(tl)
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4.5 Angular Momentum:

The key point to consider here Is the point about

which the moment can be taken.
« Moment about a
fixed reference point:

Ho=r . xmr.

(angular momentum
of theith particle about
point O)




Totalangular momentum of the system:

Rate of change of angular momentum :

:Z XM +Zr xm I —Zr e
=1
Now, using Newton' second law fora particle:
mi. =F +Zf >Ho=> r,x(E+> f,)
i=1 j=1

n

or  |Ho =1 xF =M,
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» Reference point as the center of mass:

et Li :LC +[_)i

—> Ho :Zmi(LC +Ei)x(£C +éi)
=

= Mo xFo +Iex ) Mp+ (), mp)xte
i=1 i=1
+zmiE| XEI
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Thus, |Ho=r.xmr.+H.

where H Z p; XM, o

(Ang. momentum with respect to the CM, as
viewed by a nonrotating observer moving
with the CM)

Now, differentiatinng:

Ho=rcxmrg +Z/_Oixmiéi

[CXE - o " -
pixE;

=1 33




_)I\_/IOZLCXE'I' pixE':ﬂc'I'chmic
i=1
Mc
Now r.xF=r.xmfi. (formotionof CM)
— Mc:ﬂcz /_lemi/bi
1=1

Reviewing: (Mg,

(about fixed pointO)
(about C, the CM)

 (very convenient for rigid bodies)
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« About an arbitrary reference point P:

Let P be an arbitrary P

point (could be moving).
Let r,=r,+p

and r.=r,+ p.

Then, one can show

that

Hp = pc xmp. +He
- angular momentum about P



And M, = pc xmF o+ o

— Choosing an arbitrary point for moments

of forces results in an additional term in the
moment equation.

» If P is a fixed point > M, =H, (i, =0)
 If P is the center of mass
- M, =H, (pc =0)

» IfPiIssuchthat i, and Ac are parallel
throughout the motion » M, = H,
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« Computation of Kinetic energy using P as
a reference point:

The Kinetic energy Is: T = Zn:miL ol /2
i1=1

Now, r.

=Ic+p, Li=h+p

%

T =[m‘fp‘2 +Zn:mi ‘éi‘z +2f, empc /2
=1

If P=C:

T=mlee[ + 3 m o[ 12
=1

(as before)
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Ex. 4 (4.7):
Consider a particle traveling at a speed ‘v’ to
the right. It strikes a stationary dumbbell (two

particles connected by a massless rigid rod).

The masses are: y 12m,
ml — m2 — m3 — m C
|/2
m y O 45
&—----& X
Assumption: :

» Perfectly elastic impact in my, m, (e=1).
Find: motion of the particles just after impact.



FBDs:

Observe that during impact:
* Net force on the whole system =0

— linear momentum conserved for the system
« Resultant moment about O (a fixed point)=0

— angular momentum about O conserved for
the system
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Set up of the problem:
Motion before impact: v, =vi; Vv,=Vv,=0

Motion after impact: It i1s convenient to think
In terms of the motion
of the CM, and rotational
motion about CM. Use

the triad (e,.€,,€,)
to define the motion of
the CM and the particles.
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Expressing velocities

in terms of (g,, €., €,)
Ve =V, €, +V,E,

V, =Ve +oKx I,

— v, + ok x(-le, /2)

=V + (a)lgt /2)

— MZ — Vaga + (Vt +d)| /Z)Qt

Similarly, v,=v.+wkxr.,=Vv.—(ol/2)e,

— MB :Vaga +(Vt — ol /Z)Qt
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linear momentum conserved for the system:

mvi =mv, Il +mv, + my,

or V1=Vl +2v,e,+2ve, (L)

(a vector equation — 2 scalar equations)
angular momentum conserved for the system:

0= o xV, = l&, x[V,8, + (v, — @l / 2)&,]

=—l(v,—wl/2)k — |v,=wl/2

(2)
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Note: The vectors e, and e, can be expressed
In terms of the unit vectors 1 and | as:

e, = i C0s45°— jsin45°= (i - j)/2

e, =1C0s45°+ JsIin45° = (l+i)/ﬁ

— In equations (1) and (2), V, ,V, ,V, , @
are unknowns but there are only 3 equations.
Thus one more relation is required.

» coefficient of restitution:

VAx ] : VBX
43



Aside: central impact: Consider two particles
A and B that collide with each other. The
geometry and definitions of terms are:

N Vg1
‘plane of Impact
A E B
FBDs: - P . X No y-comp of

F force

44



Let v, =V, 1 +V, Jand vy =Vg, 1 +Vg |
be velocities; v, , vy, before,andv,, ,v;, after.

The coefficient of restitution s then defined as:
the ration of the relative velocity after impact
to the relative velocity before impact, for
velocities along the line of impact:

(Vsz _Vsz) (VBx _VAx)Z

(VBxl o VAxl) (VBx o VAx)l
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 For the system at hand, elastic impact: e = 1.

Also,
Vaxa = V5 Va1 = Vayo =0, Vi = 0, Vaxz = Vi,

Vg, = (V, + 2vt)/\/5, Vgy1 = Vg,o =0. Thus

(v, +2v,) N2 - V)
(0-v)

—> v:va/\ﬁ+\/5vt—v1 (3)
Solving (1), (2), and (3) —>

V, = (2\/7/7)v, V, :(2\/7/7)v, vV, ==V/7

e:]_:
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Ex. (Problem 3.19)
Consider a cylinder rotating
at a constant rate Q.
A thin, flexible and
massless rope goes
around the drum.

* There Is no gravity,
and the rope does not

slip relative to the drum ;
At t=0,¢(0)=0, ¢(0) =rQ
Find: Tension in the rope as a function of time.
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Setup: LSS
Consider a triad (e , e, , &) Q
for the moving reference 2
frame 3, with coordinate

system located atO’. o’
* Let @ be angular
velocity of the moving Y
reference frame or triad.
» The fixed reference
frame is R with origin O. 1 -

X




Schematic: A
\

(Qt , €1 Qb)- triad for moving coordinate system
Let o be angular velocity of the moving frame.
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Use the general formulation to express ae:

ap =R+ax p+ax(@xp)+(P), +20x(p),
Let us now consider the various terms:
o=(Q+0)e, and |=ro

S l=r8 - 0=I/r

> lo=Q+I/Ne |, > [@=(1r)e,

. de
Position: R =re,, B:rd;ttzra_)xgt

— R=r(Q+l/r)e, xe, =r(Q+1/r)e,

Also R=r(l/r)e, +r(Q+l/rexe,
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Thus [R=(1)e, —r(Q+1/r)?e,

Now, p=—le, —=|(p), =-le,| = |(p), =-le

—nN

Also  @x p=(l /r)e,x(-le,)=(I/r)e,
ox(@xp)=1(Q+1/r)’e,
20x(p), =21(Q+1/r)e,

a, =[-r(Q+1/r)> +1 [r+21(Q+1/1)]e,
+1(Q+1/r1)%e,

Imp: Theisacceleration relative to ‘i



Now, applying Newton’s Second Law:
F=ma—Te =ma

e —r(Q+1/r)?+1/r+21(Q+1/r)=0

or |l +12-r?Q%=0
- d(D/dt=r’Q* — d(I1)=r?Q%dt

Initial conditions: £(0) =0, ¢(0) = rQ
Integration —»

00 = r2Q%t
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Integrating once again,

| t
jm = r2(0)? jrdr 12 =r20%? —»
0 0

e T=ml(Q+1/r)?=4mIQ’

or |T =4mrQ’t

| = rQt
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