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CHAPTER 4

DYNAMICS OF A SYSTEM OF PARTICLES 

• We consider a system consisting of n particles

• One can treat individual particles, as before; 
i.e.,one can draw FBD for each particle, 
define a coordinate system and obtain an 
expression of the absolute acceleration for the 
particle. One can then use Newton’s second 
law and proceed to get n second-order 
coupled ODEs. 

• Focus here is on overall motion of the system-
also a precursor to rigid body dynamics.
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4.1  Equations of Motion:

Consider a system with:

• n particles

• masses -

• positions -

There are two types

of forces acting:

• External forces -

• Internal forces -

r i

Fi ;

m i

f ij

Z

X

Y

O

r1

F1

rC

ri

F2

Fi

mi

m2m1

mC

f12 f21

f2i

fi2

i



3

- force on the      particle due to its

interaction with the      particle

• Newton’s 3rd law  

Also

• Newton’s 2nd law for       particle:
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Now, for 3-dimensional motions, the position 

of each particle (in Cartesian coordinates) is:

Thus, each equation in Newton’s second law 

has 3 scalar second-order ordinary diff. 

equations. 3n scalar second-order o.d.e.’s 

for the system

In order to solve for the motion, one needs to 

know:

• external forces on each of the particles

• nature of internal forces
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e.g., Newton’s law of gravitation:

We also need:

• initial conditions:

The general solutions to these nonlinear 

ODEs are unknown; they are difficult to 

solve except for in some very simple cases 

and small n.
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Suppose we would like to get overall motion of 

the system, not those of individual particles.  

Adding the n equations:

Now,                        (net interaction force is zero)          

• - total mass

• - defines center of mass;   

note that it is a function of 

time since the particles move.
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• - total external force

• Equation of motion for

the center of mass

Internal forces do not affect the motion of 

the center of mass.
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4.2  Work and Kinetic Energy

• The motion of individual particle is defined by

• The motion of center of mass C is defined by

where the total mass is 
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Consider a motion of

the system. The initial

state is A, and the final

state is B. Let AC and BC 

denote the positions of

the CM. 

• Now, for the CM

• work-energy statement for the CM
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Note that                      is only the work done by 

external forces, and it is related to the change

in translational kinetic energy associated with 

the CM

• Let           work done on the       particle by all 

the forces acting on it in moving from 
Wi i th
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Now:

where         - position of      particle relative to   

the CM of the system

• Total work done=sum of the work done on all 

particles: 
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work done by summation of the

total ext. forces work done on all the

through the displ.           particles through their

of the CM displacements relative

to the CM

• For each particle, the work done is:

1 1

( )
C i

C i

B Bn n

C i ij i

i jA A

W F dr F f d

1 1
( ) ( )

2 2

i i

i i

B B

i i i i i C i C i

A A

W m r r m r r    



13

- the sum of increase/change in

KE of the system.
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work-energy principle for

the system of particles

T = K.E. at any instant

Recalling the work-energy principle for the CM:

Work done by all forces (external as well as 

internal) in relative motion KE for relative

motion
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Important: In general, internal forces      do

work in any motion of the system. Sometimes, 

net work (that on the whole system) may be 

zero even though there is work done on 

individual particles.

Ex: Consider the force in a spring 

connecting two moving bodies - there is 

net work done by the spring force -

evaluated by potential function       .

f ij

sp
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Ex 1:  Consider two particles connected by 

a massless rigid (inextensible) rod, and 

acted upon by a force F.

FBDs for individual

particles are:

F

1

2r1

r2

rC

C

O

m1

m2

m1

m2

F

C
f12

f21
Note: f12=- f21



17

• Work done in relative motion by internal

forces:

• constraint

• Differentiate:

Now:
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Ex 2:

Consider the system

shown here. A slider

moves on a rough

guide, and a pendulum

is attached to it at A.

• connected by a massless rigid link.

• Coulomb friction between       and the 

horizontal guide. Force P acts on the block A.
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The FBDs are:

The positions of the two particles can now 

be defined:  
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The equations of motion for the individual 
particles are:

• Try to write the equation of motion for the 

CM of the system.
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4.3  Conservation of Mechanical Energy

• Suppose that the External forces are 
conservative, that is,                    are 
conservative.                                               

for the CM of the system

Total energy conserved for motion of the CM

• Suppose that Internal forces also conservative:

E = T + V

Total energy conserved for the whole system.
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Ex. 3 (4.2): Consider the system shown.

• connected by a massless spring.

• A constant force F applied to       at t = 0.

• No friction between the floor and the blocks

Find:

IC (t = 0), spring 

unstretched
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Motion of the CM:

Motion of the block m1:

FBD:         
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Newton’s law for block m1:
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Aside (steps involved in the solution):
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Or    

Energy considerations:  (verification)

Recall that 
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Now, consider for the whole system:
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W = work done by the external force
2 2 2

1 ( / 4 ) ( / 4 ){1 cos( 2 / )}

(0 0)
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(final totalenergy) (initial totalenergy)
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4.4  Linear Impulse and Momentum

Let,                     - lin. impulse of external forces

Considering Newton’s laws for motion of CM:

Let - total linear    
momentum of the 

system at a given instant
Then
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4.5  Angular Momentum:

The key point to consider here is the point about 

which the moment can be taken.

• Moment about a

fixed reference point:
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1 1
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• Reference point as the center of mass:

Let 
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(Ang. momentum with respect to the CM, as

viewed by a nonrotating observer moving 

with the CM)

Now, differentiating:
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• (very convenient for rigid bodies)
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• About an arbitrary reference point P:

Let P be an arbitrary

point (could be moving).

Let 

Then, one can show

that 

- angular momentum about P

Z

X

Y

O

rP

rC

ri

Fi

mi

mC fi2

iC

P

and

i P i

C P C

r r

r r

P C C CH m H



36

And  

Choosing an arbitrary point for moments 

of forces results in an additional term in the 

moment equation.

• If P is a fixed point

• If P is the center of mass

• If P is such that       and       are parallel 

throughout the motion

P C P PM mr H
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• Computation of Kinetic energy using P as 

a reference point:

The kinetic energy is: 
1
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Ex. 4 (4.7):
Consider a particle traveling at a speed ‘v’ to 

the right. It strikes a stationary dumbbell (two 

particles connected by a massless rigid rod).  

The masses are:

Assumption:

• Perfectly elastic impact in                (e=1).

Find:  motion of the particles just after impact. 
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FBDs:

Observe that during impact:

• Net force on the whole system = 0

linear momentum conserved for the system

• Resultant moment about O (a fixed point)= 0

angular momentum about O conserved for 
the system
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Set up of the problem:

Motion before impact:

Motion after impact: It is convenient to think 

in terms of the motion

of the CM, and rotational

motion about CM. Use

the triad 

to define the motion of

the CM and the particles.
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Expressing velocities

in terms of 
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linear momentum conserved for the system:

(a vector equation 2 scalar equations)

angular momentum conserved for the system:

1 2 3
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Note: The vectors                   can be expressed 

in terms of the unit vectors i and j as:

In equations (1) and (2),               

are unknowns but there are only 3 equations. 

Thus one more relation is required.

• coefficient of restitution: 

1 , , ,t av v v

andt ae e
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Aside:  central impact: Consider two particles 

A and B that collide with each other. The 

geometry and definitions of terms are: 

FBDs: No y-comp of 
force

vA1 vB1
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1 1 2 2

Let and

be velocities; , before,and , after.

The i
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• For the system at hand,  elastic impact: e = 1. 

Also, 

1 1 2 1 2 1

2 1 2

1
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Ex. (Problem 3.19)

Consider a cylinder rotating

at a constant rate .

• A thin, flexible and

massless rope goes

around the drum.

• There is no gravity,

and the rope does not

slip relative to the drum ;

At 

Find: Tension in the rope as a function of time. 
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Setup:

Consider a triad 

for the moving reference

frame , with coordinate

system located at  

• Let be angular

velocity of the moving

reference frame or triad.

• The fixed reference

frame is with origin O.
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- triad for moving coordinate system

Let be angular velocity of the moving frame.

e e et n b, ,b g
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Schematic:
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•Use the general formulation to express aP:

Let us now consider the various terms:
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Now, applying Newton’s Second Law:

Initial conditions:  

Integration 
2 2r t
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Integrating once again,
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