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Newton‟s Second Law: It is an experimentally

derived law, valid in a reference frame –

Inertial reference frame.

XYZ - inertial

reference frame

Let m be mass,

rOP- position vector.

Then
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3.1 Direct Integration of Equations of Motion

Newton‟s Law gives:

This needs to be solved, subject to

initial conditions:

Case 1: The external force is a constant.

In Cartesian coordinate system

( , , ) PF r r t ma

0 0 0 0( ) ; ( )r t t r r t t r 

, ,

Consider thesystemin x-direction :

/ constant (say ' ') ( )

x y z

x

mx F my F mz F

x F m a d x dt a
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Integrating first by “separation of variables”:

or,                               (speed vs. time) 

Integrating again:

or                                         (position vs. time)

One can also approach the integration with 

position as the independent variable:

0

0

0

( ) ( )

v t

v t

d x a d v t v at

0( )v t v at

0

0

0

( ) ( )

x t

x t

d u v a d

2

0 0( ) / 2x t x v t at
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Let

(position vs. speed)

Reading Assignment: Motion of a particle in a 

uniform gravitational field.

0 0

2

2

2

2 2

0 0

( ) ( ) ( ) ( / 2)
( ) ( )

( / 2)
Then, Newton'

c

s 2nd Law

Separation of variables ( / 2)

,

hain rule

2 ( )

v x

v x

d d x d x d x d x
x x
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d x
a
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d x adu

or v v a x x
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Then, in Cartesian coordinates, 

Case 2: The external force is a function of time.

0 0 0

0

0

0

0 0

0

0

0 0

0 0

( ) ( ( ) / ) ( ) ( ( ) / )

Similarly, ( ) { ( ( ) / ) }

( ) ( ( ( ) / ) )

v t t

x x

v t t

t

x

t

t

x

t

d x F m d v t v F m d

d x v F m d d

x t x v t F s m ds d
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Special case:  

e.g.  (example 3.3)

Case 3: The force is a function of position.

0 0

2

2 2 2 2

0 0

(linear,separable function)

Equation of motion :

Integration : ( / 2)

( ) / 2 ( ) / 2

x

v x

v x

F kx

mx kx

m d x kudu

m v v k x x
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Then, to integrate again, we write as  

or

or                                           (position vs. speed) 2 2 2 2

0 0( ) /v v k x x m

2 2 2 1/ 2

0 0[ ( ) / ]dx dt v k x x m

0

2 2 2 1/ 2

0 0

0

1 1 0

2 2 2 2

0 0 0 0

2 2

0 0

-1 2 2

0 0 0

[ ( ) / ]

/ [sin sin ]
( / ) ( / )

or ( ) ( / ) sin( / )

where =sin ( / ( / ) )

t x

x

d v k u x m du

xx
t k m

m k v x m k v x

x t m k v x k m t

x m k v x
(position vs. time)
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Case 4: The force is a function of velocity.

Special case: 

Ex. 3.4: Projectile with air drag

drag force ~ velocity

( ) ( ) ( ) ( )x y zF r F x i F y j F z k   

X

Y P
-cv

mg

vP

O

where

F mg j cv

v x i yj 

: (1) : (2)i cx mx j cy mg my   
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x-motion:

initial conditions:

Integrating:   

cx mx 

0 0( 0) , ( 0)x t x x t x 

0

0

0

( / )

0 0

( / )

0

0

( ) ( / )

( ) / ( / ) ( / )

ln( / ) ( / ) ( )

Integrating again :

x t

x

c m t

x t

c m

x

d x dt c m x

d u u c m d c m t

x x c m t x t x e

du x e d
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or 

y-motion: 

initial conditions:

Integrating: 

( / ) ( / )

0 0 00

( / )

0 0

( ) ( / ) ( / ) [1 ]

( ) ( / ) [1 ]

t
c m t c m t

c m t

x t x m c x e m c x e

x t x m c x e

 



my cy mg 

0 0( 0) , ( 0)y t y y t y 

0

0

0

0

( )

( ) ( / )
( / ) ( / ) ln[ ]

( / ) ( / )

y t

y

y

y

md u
d t

cu mg

d u y mg c
or t m c m c

u mg c y mg c
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or 

Integrating again 

Summarizing:

( / )

0( ) ( / ) [ ( / )] c m ty t mg c y mg c e 

0

( / )

0

( ) ( / )

( / ){ ( / )}[1 ]c m t

y t y mg c t

m c y mg c e

( / )

0 0( ) ( / ) [1 ]c m tx t x m c x e

( / )

0

0 0

0

limiting x-displac

( )

, ( ) 0, ( ) /

eme( n )

0, ( ) ( tan )

t

c m tx t x e

as t x t x t x mx c

of c x t x remains cons t
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x(t) as t (unbounded x-displacement)

as t , (terminal speed)

(unbounded)

if c=0,                                      (both unbounded)

( / )

0( ) ( / ) [ ( / )] c m ty t mg c y mg c e 

0

( / )

0

( ) ( / )

( / ){ ( / )}[1 ]c m t

y t y mg c t

m c y mg c e

( ) , ( ) .y t y t

( )y t

( ) ( / )y t mg c
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3.2 Work and Kinetic Energy

Imp: for a particle, the work-energy approach 

is derivable from Newton‟s law for the particle,

and gives no new information; it provides 

further insight.

Consider a particle

moving along a path,

starts at A, goes to B.

Let, when at position

P, a force     act on

the particle.

F

B

P

A

z

x
y

F

rOP

et

P‟
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dr - small change in position;                                              

Newton‟s 2nd Law

Defn: Work done by the force acting on the 

particle in a small (infinitesimal) displacement

is:           dW=F dr.

Dot product with Newton‟s law 

F mr

2[ ( ) 2 ] ( ) 2

B

A

r

r

B B B

A A A

F dr

mr dr m d r r dt dt m d v  

2 2 2( ) 2 ( ) / 2

B

A

r B

A B B A

r A

F dr W m d v m v v
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Let                                        - kinetic energy of

the particle

principle of   

work and kinetic energy

3.3 Conservative Forces:

Suppose that the force      acting is such that  
1) it is a single-valued function only of 

position, that is,     does not explicitly 
depend on t;

2) the line integral                only depends on 
end points

F

F

F dr
A

Bz

2 / 2 / 2T mv mv v

2 2( ) / 2A B B A B AW T T m v v
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One then says that:

The force is

conservative or the

mechanical process
is reversible

• must be an exact differential

(- ve sign is for convenience)

V - potential energy associated with the force.

Then, 

0F dr

P

z

O

A

B

y x

F

( )

dW F dr

d V

B B B

A B A B

A A A

W dW F dr dV V V
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• Decrease in potential energy in moving the

particle from A to B equals the work done on

the particle.

Let   E = T + V; it is called the total energy.

If the only force acting on the particle is a

conservative force:

principle of 

conservation of

mechanical energy

W V V T TA B A B B A

A A B BT V T V
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3.4  Potential Energy

Recall: for a force dependent only on position,

if a potential function exists: V depends only on 

position - V = V(x, y, z)     (in Cartesian system)

For the work done by the force:

( ) ( ) ( )dV V x dx V y dy V z dz

,

, ,

( )

x y z

x y z

F F i F j F k dr dx i dyj dzk

V V V
dW F dr dV F F F

x y z

V V V
F i j k V gradient of V

x y z
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Ex: Inverse-square law of attraction:

The force exerted by the attracting field is 

radial:   

gravitational potential energy:

2

( 0)

r

V K
F

r r

K
V C may choose C

r

2

2

0

;r eF K r r R

weight w mg K r

m

O h

r

Re

F

r

earth
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(potential energy due to the gravitational field)

Now,  r = R+h  

• Near earth‟s surface h < < R h/R < < 1.

• If we choose constant C (reference) so that 

the potential energy at the surface is 

zero 

K mg R F
mg R

r
r Ro r

o2
2

2
( )

V mg R r r Ro
2 / ( )

V mg h.o~

oV=-mg R/{1+(h/R)}

oV - mg R{1- (h/R)}
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0

0

2 2

0 0 0

The work donei

( )

Thedistance moved by the

particle is :

:

( )

( ) [ ( ) ( ) ] / 2

s

s s r r

r

s

B

A B A B

A

F F e k r l e

dr dre rd e

dW F dr k r l dr

W k r l dr k r l k r l

Ex: Potential energy of a linear spring:

The force in the spring is

B

O

A

k

r

er

Fs

e
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• V = elastic energy or spring potential energy

- stretch in the 

spring

Reading Assignment Ex: 3.6

General form of work-energy principle:

or   

1

2

2k r lo, ( )

W V V W T TA B A B A B
nc

B A

nc

A A A B B BT +V +W =T +V
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3.5 Linear Impulse and Momentum:

Newton‟s second law  

Newton‟s law used the velocity is 

measured relative to an inertial frame.

Suppose that      is given as a function of time. 

Integrating:

F

l

( ) ( )

where inear momentumof the particle

P

P

d d
F mv p

dt dt

p mv

2 2

1 1

2

1

2 1

2 1

( ) ( ( )) ( ) ( )

ˆ ( ) ( ) ( )

t t

t t

t

t

F d d p p t p t

F F d p t p t
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- impulse of the force     over the time

interval

• The change in linear momentum of a 

particle during a given time interval equals 

the total impulse (linear) of the forces 

acting on the particle.

• When the time interval of action is very 

small, the force is called an impulsive force.  

Then                              is finite even though

Ex. Forces during impact.

F F
( ).t t1 2

( ) .t t2 1 0

 ( )F F t dt
t

tz
1

2
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Ex: (Example 4.5)

Find: Total horizontal distance        till the ball

continues to bounce; Also, the total time taken.

• Key - consideration of the impact with the 

floor and the impulsive action.  It needs to be 

used repeatedly. 

totx

ym e=0.9

x

v0

h

smooth floor
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FBD during an impact:

(velocity just before impact).

(velocity just after impact).

Impact t 0.

Applying Impulse-momentum principle:

x

y

v1

Ry

v2
1 1 1x yv v i v j

2 2 2x yv v i v j

2 1 2 1 0

1 2

0

0

x x x x x

y y x y x

t

F mv mv v v v

F R mv R d mv
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• Nature of the impulsive force       not known

• coefficient of restitution

yR

Ry(t)

O
t

t

area under( )y

t

R d
thecurve

2

2 1

1

relates velocities in
y

y y

y

v
e v e v

v direction of impact

( 1) during nth impacIn general : tn y nyv e v
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Schematic representation of motion:

Now, 

Time of flight:     = time between       and

bounce    

tn ( )n th1n th

v2y

v3y
v2y

v1y

v5y

v3y

v4y

v4y

V1y= (2gh) v4y

t1 t2 t3 t4
2 2

2 1 3 2 1

3

4 3

, 2

2 ,.........

y y y y y

y y

v ev v ev e v e gh

v ev e gh

( 1)

0

2 / 2 /

time to hit thefloor1st time 2

n n y nyt v g ev g

t gh
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Total time it takes before ball stop bouncing:

0 1 2 3 4 5

0 1 2 3 4

2 3

2 3

0

...........

2 / 2 / 2 / 2 / ...

2 / 2 2 / 2 2 / 2 2 / ...

2 / {1 2 2 2 ........}

1
2 / { } finite time(for 1)

1

y y y y

tot

T t t t t t t

t ev g ev g ev g ev g

h g e h g e h g e h g

h g e e e

e
T h g e

e

x v T
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3.6  Angular Momentum and Angular Impulse

Recall the definition of linear momentum w.r.t.

an inertial frame:

Moment of linear

momentum about

a point O:

(angular momentum about O). Its rate of

change is

path

X

Z

Y

O

P F

rOP
et

en

eb

Pp mv

O OP OP PH r p r mv

( )O O OP P OP PH d H dt r mv r mv  
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• Now, 

• Newton‟s Second law:   

• moment of the net force about a

fixed point equals the time rate of

change of angular momentum

about the same fixed point.

• - angular impulse

Principle of angular

impulse and momentum:

( )O O OP PH d H dt r mv 

P

O OP O

O O

F mv

H r F M

M H







2

1

ˆ( )

t

O

t

M d M

2 1
ˆ ( ) ( )M H t H t
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3.8  Coulomb Friction:

Consider a block A

sliding on block B with a

velocity      relative to B.

(i.e.                     )  

• Classical Coulomb law:

when sliding, the friction

force = (normal force)

vr

A

B

vr

r A Bv v v

N

A

f= N

W

vr
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- coefficient of sliding friction (depends on the 

materials and roughness of the sliding 

surfaces).

• In reality, f also depends on the slip velocity

• When            , the force                , is 

determined by Static Equilibrium.

vr .

vr 0 f N

rv

f=Fr

μN

-μN
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Ex. (Ex. 3.11)

Consider a spring - mass

system. There is coulomb

friction between the block

and the horizontal surface.

Let, initial conditions:x (t = 0) =     ,

Find:     x(t).

Consider the FBD.

Assume initial      

such that

k     > f = N = mg

block moves

xo ( ) .x t 0 0

xo

xo

m
k

x

kx

N

mg

f
x

y
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• When  

• When

Note that both the equations are linear.  The 

overall system is nonlinear as the equation

used needs to be switched depending on the

choice of the sign of .

Solution process: Consider 

x

0,friction forceis to the right;

So, and

x

f mg mx kx mg





0,friction forceis to the left;

So, and

x

f mg mx kx mg





0

0,

with . : (0) , (0) 0.

x

mx kx mg I Cs x x x
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The solution is: 

Thus, 

( ) ( ) ( )

( ) / ; ( ) cos sin

/

h p

p h n n

n

x t x t x t

x t mg k x t A t B t

where k m

0 0

0

( ) / cos sin

( ) sin cos

Using initialconditions : (0) 0 0

( ) / cos

Now (0) /

T

Thissolution is valid till velocity

hus, ( ) / ( / ) cos 0

firs

n n

n n n n

n

n

x t mg k A t B t

x t A t B t

x B

x t mg k A t

x x A x mg k

x t mg k x mg k t for x







t becomes zero.
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0 1

The velocity first becomes zero when:

0 ( / )sin /n n nx x mg k t t

The time    is period of ‘half cycle’.

Then, 

t1

1 0 1

1

1

0

( ) 2 / ; ( ) 0.

: ( )

Thesolution is : ( )

Now cons

( ) ( )

or, ( ) / cos sin

( ) ( sin c

id

os )

Using initialconditions at ,

0 /

er 0

, 3

h p

n n

n n n

x t x mg k x t

mx kx mg t t

x t x t x t

x t mg k A t B t

x t A t B t

t t

B A x m

x

g k
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Thus,

The velocity vanishes again when

The period of „one cycle‟

In this duration, the amplitude of oscillation

decreases by

• In same manner, one can find solutions for 

succeeding half-cycles.  

T t t t n1 2 1 2 / .

0 0( 4 / ) 4 / .x x mg k mg k

0( ) ( 3 / )cos /

for ( / 2 / )

n

n n

x t x mg k t mg k

t

0

2 2 0

( ) ( 3 / )sin 0

2 / ( ) 4 /

n n

n

x t x mg k t

t x t x mg k
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In the        half-cycle:

0

0

0

Clearly, this motion exists provided thespring has

enough force to over

or the first half-cycl

in the timeinterval {(

come

e:

frict

1) / / }

/ .

2 / /

3 / .

For thesecond half-cycle:

ion.

n nn t n

x mg k

x mg k mg k

or x g k

F

m

n th

1

0( ) ( 1) / { (2 1) / }cosn

nx t mg k x n mg k t
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0

0

0

0

For the nth ha

or the third hal

lf-cycl

f-cycle: 4 / /

5 / .

2( 1) / /

(2 1) / .

e:

x mg k mg k

or x mg k

x n mg k mg k

or x n m k

F

g
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• If the spring force is not sufficient, the motion 

stops permanently at

where n is the total number of half-cycles.

0( 1) { (2 ) / }

at the time /

n

n

x x n mg k

t n

Linear decay
x0

/
2 /

t
mg/k

0


