CHAPTER 3
 DYNAMICS OF A PARTICLE

Newton's Second Law: It is an experimentally derived law, valid in a reference frame -
Inertial reference frame. XYZ - inertial reference frame
Let m be mass, $\underline{\mathbf{r}}_{\mathrm{OP}}{ }^{-}$position vector. Then

3.1 Direct Integration of Equations of Motion

Newton's Law gives: $\underline{F}(\underline{r}, \underline{\dot{r}}, t)=m \underline{a}_{P}$
This needs to be solved, subject to initial conditions: $\underline{r}\left(t=t_{0}\right)=\underline{r}_{0} ; \underline{\dot{r}}\left(t=t_{0}\right)=\underline{\dot{r}}_{0}$
Case 1: The external force is a constant.
In Cartesian coordinate system

$$
m \ddot{x}=F_{x}, \quad m \ddot{y}=F_{y}, \quad m \ddot{z}=F_{z}
$$

Consider the systemin x-direction :

$$
x=F_{x} / m-\operatorname{constant}\left(\operatorname{say}^{\prime} a^{\prime}\right) \rightarrow d(\dot{x}) / d t=a
$$

Integrating first by "separation of variables":

$$
\begin{aligned}
& \int_{v_{0}}^{v} d(\dot{x})=\int_{t=0}^{t} a d \tau \rightarrow v(t)-v_{0}=a t \\
\text { or, } & v(t)=v_{0}+a t \quad \text { (speed vs. time) }
\end{aligned}
$$

Integrating again: $\int_{x_{0}}^{x} d(u)=\int_{t=0}^{t}\left(v_{0}+a \tau\right) d \tau$ or $x(t)=x_{0}+v_{0} t+a t^{2} / 2 \quad$ (position vs. time)

One can also approach the integration with position as the independent variable:

Let

$\frac{d}{d t}(\dot{x})=\frac{d(\dot{x})}{d x} \frac{d(x)}{d t}($ chain rule $)=\dot{x} \frac{d(\dot{x})}{d x}=\frac{d\left(\dot{x}^{2} / 2\right)}{d x}$
Then, Newton's 2nd Law $\rightarrow \frac{d\left(\dot{x}^{2} / 2\right)}{d x}=a$
Separation of variables $\rightarrow \int_{v_{0}}^{v} d\left(\dot{x}^{2} / 2\right)=\int_{x_{0}}^{x} a d u$ or, $v^{2}=v_{0}^{2}+2 a\left(x-x_{0}\right)$ (position vs. speed)
Reading Assignment: Motion of a particle in a uniform gravitational field.

Case 2: The external force is a function of time.

 Then, in Cartesian coordinates,$$
m \ddot{x}=F_{x}(t), m \ddot{y}=F_{y}(t), m \ddot{z}=F_{z}(t)
$$

$$
\int_{v_{0}}^{v} d(\dot{x})=\int_{t_{0}=0}^{t}\left(F_{x}(\tau) / m\right) d \tau \rightarrow v(t)=v_{0}+\int_{t_{0}=0}^{t}\left(F_{x}(\tau) / m\right) d \tau
$$

Similarly, $\quad d(x)=\left\{v_{0}+\int_{t_{0}=0}^{t}\left(F_{x}(\tau) / m\right) d \tau\right\} d \tau$
$\rightarrow x(t)=x_{0}+v_{0} t+\int_{0}^{t}\left(\int_{t_{0}=0}^{\tau}\left(F_{x}(s) / m\right) d s\right) d \tau$

Case 3: The force is a function of position.

Special case: $\underline{F}(\underline{r})=F_{x}(x) \underline{i}+F_{y}(y) \underline{j}+F_{z}(z) \underline{k}$
e.g. (example 3.3) $\quad F_{x}=-k x$
(linear, separable function)
Equation of motion :

$$
m \ddot{x}=-k x
$$

Integration: $m \int_{v_{0}}^{v} d\left(\dot{x}^{2} / 2\right)=-\int_{x_{0}}^{x} k u d u$
$\rightarrow m\left(v^{2}-v_{0}^{2}\right) / 2=-k\left(x^{2}-x_{0}^{2}\right) / 2$

$$
\text { or } v^{2}=v_{0}^{2}-k\left(x^{2}-x_{0}^{2}\right) / m \quad \text { (position vs. speed) }
$$

Then, to integrate again, we write as

$$
d x / d t=\left[v_{0}^{2}-k\left(x^{2}-x_{0}^{2}\right) / m\right]^{1 / 2}
$$

or

$$
\int_{0}^{t} d \tau=\int_{x_{0}}^{x}\left[v_{0}^{2}-k\left(u^{2}-x_{0}^{2}\right) / m\right]^{1 / 2} d u
$$

$$
\rightarrow t=\sqrt{k / m}\left[\sin ^{-1} \frac{x}{\sqrt{(m / k) v_{0}^{2}+x_{0}^{2}}}-\sin ^{-1} \frac{x_{0}}{\sqrt{(m / k) v_{0}^{2}+x_{0}^{2}}}\right]
$$

$$
\text { or } x(t)=\sqrt{(m / k) v_{0}^{2}+x_{0}^{2}} \sin (\sqrt{k / m} t+\alpha)
$$

where $\quad \alpha=\sin ^{-1}\left(x_{0} / \sqrt{(m / k) v_{0}^{2}+x_{0}^{2}}\right)$

Case 4: The force is a function of velocity.
Special case: $\underline{F}(\underline{\dot{r}})=F_{x}(\dot{x}) \underline{i}+F_{y}(\dot{y}) \underline{j}+F_{z}(\dot{z}) \underline{k}$ Ex. 3.4: Projectile with air drag

drag force ~ velocity

$$
\underline{F}=-m g \underline{j}-c \underline{v}
$$

$$
\text { where } \underline{v}=\dot{x} \underline{i}+\dot{y} \underline{j}
$$

$$
\begin{equation*}
\underline{\underline{i}}:-c \dot{x}=m \ddot{x} \quad \text { (1) } \quad \underline{\underline{j}}:-c \dot{y}-m g=m \ddot{y} \tag{2}
\end{equation*}
$$

x-motion: $\quad-c \dot{x}=m \ddot{x}$

initial conditions: $x(t=0)=x_{0}, \quad \dot{x}(t=0)=\dot{x}_{0}$

Integrating:

$$
d(\dot{x}) / d t=-(c / m) \dot{x}
$$

$$
\int_{\dot{x}_{0}}^{\dot{x}} d(\dot{u}) / \dot{u}=-\int_{0}^{t}(c / m) d \tau=-(c / m) t
$$

$\rightarrow \ln \left(\dot{x} / \dot{x}_{0}\right)=-(c / m) t \rightarrow \dot{x}(t)=\dot{x}_{0} e^{-(c / m) t}$
Integrating again: $\int_{x_{0}}^{x} d u=\int_{0}^{t} \dot{x}_{0} e^{-(c / m) \tau} d \tau$
or $x(t)-x_{0}=-\left.(m / c) \dot{x}_{0} e^{-(c / m) t}\right|_{0} ^{t}=(m / c) \dot{x}_{0}\left[1-e^{-(c / m) t}\right]$

$$
\rightarrow \quad x(t)=x_{0}+(m / c) \dot{x}_{0}\left[1-e^{-(c / m) t}\right]
$$

$y-m o t i o n: ~ m \ddot{y}+c \dot{y}=-m g$
initial conditions: $y(t=0)=y_{0}, \quad \dot{y}(t=0)=\dot{y}_{0}$
Integrating: $\int_{\dot{y}_{0}}^{\dot{y}} \frac{m d(\dot{u})}{c \dot{u}+m g}=-\int_{0}^{t} d \tau=-t$
or $t=-(m / c) \int_{\dot{y}_{0}}^{\dot{y}} \frac{d(\dot{u})}{\dot{u}+(m g / c)}=-(m / c) \ln \left[\frac{\dot{y}+(m g / c)}{\dot{y}_{0}+(m g / c)}\right]$
or $\dot{y}(t)=-(m g / c)+\left[\dot{y}_{0}+(m g / c)\right] e^{-(c / m) t}$

Integrating again \rightarrow

$$
\begin{aligned}
y(t) & =y_{0}-(m g / c) t \\
& +(m / c)\left\{\dot{y}_{0}+(m g / c)\right\}\left[1-e^{-(c / m) t}\right]
\end{aligned}
$$

Summarizing: $x(t)=x_{0}+(m / c) \dot{x}_{0}\left[1-e^{-(c / m) t}\right]$

$$
\dot{x}(t)=\dot{x}_{0} e^{-(c / m) t}
$$

as $t \rightarrow \infty, \dot{x}(t) \rightarrow 0, x(t) \rightarrow x_{0}+m \dot{x}_{0} / c$
(limiting x-displacement)
of $c=0, \quad \dot{x}(t)=\dot{x}_{0} \quad($ remains cons $\tan t)$
$x(t) \rightarrow \infty$ as $t \rightarrow \infty$ (unbounded x-displacement)

$$
\begin{aligned}
& \dot{y}(t)=-(m g / c)+\left[\dot{y}_{0}+(m g / c)\right] e^{-(c / m) t} \\
& y(t)=y_{0}-(m g / c) t
\end{aligned}
$$

$$
+(m / c)\left\{\dot{y}_{0}+(m g / c)\right\}\left[1-e^{-(c / m) t}\right]
$$

as $t \rightarrow \infty, \quad \dot{y}(t) \rightarrow-(m g / c) \quad$ (terminal speed)

$$
y(t) \rightarrow-\infty \quad \text { (unbounded) }
$$

if $\mathbf{c}=\mathbf{0}, \dot{y}(t) \rightarrow-\infty, y(t) \rightarrow-\infty$.(both unbounded)

3.2 Work and Kinetic Energy

Imp: for a particle, the work-energy approach is derivable from Newton's law for the particle, and gives no new information; it provides further insight. Consider a particle moving along a path, starts at A, goes to B. Let, when at position P, a force Fact on the particle.

$d \underline{r}$ - small change in position;

$$
\underline{F}=m \ddot{\underline{r}} \quad \text { Newton's 2nd Law }
$$

Defn: Work done by the force acting on the particle in a small (infinitesimal) displacement is: $d W=\underline{F} \bullet d \underline{r}$.
Dot product with Newton's law $\rightarrow \int \underline{F} \bullet d \underline{r}$

$$
\begin{aligned}
& =\int_{\underline{A}_{B}}^{B} m \underline{\ddot{r}} \bullet d \underline{r}=m \int_{A}^{B}[d(\underline{\dot{r}} \bullet \underline{\dot{r}}) / 2 d t] d t=m \int_{A}^{B} d\left(v^{2}\right) / 2 \\
& \rightarrow \int_{\underline{\underline{L}}_{A}} \underline{F} \bullet d \underline{r}=W_{A \rightarrow B}=m \int_{A}^{B} d\left(v^{2}\right) / 2=m\left(v_{B}^{2}-v_{A}^{2}\right) / 2
\end{aligned}
$$

$$
\text { Let } T \equiv m v^{2} / 2=m \underline{v} \bullet \underline{v} / 2 \text { - kinetic energy of } \begin{gathered}
\text { the particle }
\end{gathered}
$$

$\rightarrow W_{A \rightarrow B}=T_{B}-T_{A} \equiv m\left(v_{B}^{2}-v_{A}^{2}\right) / 2 \quad$ principle of work and kinetic energy
3.3 Conservative Forces:

Suppose that the force \underline{F} acting is such that

1) it is a single-valued function only of position, that is, \underline{F} does not explicitly depend on t;

$$
\rightarrow \oint \underline{F} \bullet d \underline{r}=0
$$

One then says that: The force is conservative or the mechanical process is reversible

- $d W=\underline{F} \bullet d \underline{r} \quad$ must be an exact differential

$$
=-d(V) \quad(- \text { ve sign is for convenience })
$$

\boldsymbol{V} - potential energy associated with the force.
Then, $W_{A \rightarrow B}=\int_{A}^{B} d W=\int_{A}^{B} \underline{F} \bullet d \underline{r}=-\int_{A}^{B} d V=V_{A}-V_{B}$

- Decrease in potential energy in moving the particle from A to B equals the work done on the particle.
Let $\mathbf{E}=\mathbf{T}+\mathrm{V}$; it is called the total energy. If the only force acting on the particle is a conservative force: $W_{A \rightarrow B}=V_{A}-V_{B}=T_{B}-T_{A}$
$\rightarrow \quad \begin{aligned} T_{A}+V_{A}=T_{B}+V_{B} & \text { principle of } \\ & \text { conservation of } \\ & \text { mechanical energy }\end{aligned}$

3.4 Potential Energy

Recall: for a force dependent only on position, if a potential function exists: V depends only on position - $\mathbf{V}=\mathbf{V}(\mathbf{x}, \mathbf{y}, \mathbf{z}) \quad$ (in Cartesian system)

$$
d V=(\partial V / \partial x) d x+(\partial V / \partial y) d y+(\partial V / \partial z) d z
$$

For the work done by the force:

$$
\underline{F}=F_{x} \underline{i}+F_{y} \underline{j}+F_{z} \underline{k}, d \underline{r}=d x \underline{i}+d y \underline{j}+d z \underline{k}
$$

$\rightarrow d W=\underline{F} \bullet d \underline{r}=-d V \rightarrow F_{x}=-\frac{\partial V}{\partial x}, F_{y}=-\frac{\partial V}{\partial y}, F_{z}=-\frac{\partial V}{\partial z}$
$\rightarrow \underline{F}=-\frac{\partial V}{\partial x} \underline{i}-\frac{\partial V}{\partial y} \underline{j}-\frac{\partial V}{\partial z} \underline{k} \equiv-\nabla V$ (gradient of V)

Ex: Inverse-square law of attraction:

The force exerted by the attracting field is radial:

$$
\begin{aligned}
F_{r} & =-\frac{\partial V}{\partial r}=-\frac{K}{r^{2}} \\
\rightarrow V & =-\frac{K}{r}+C \quad(\text { may choose } C=0)
\end{aligned}
$$

gravitational potential energy:

$$
F_{r}=-K / r^{2} ; r \geq R_{e}
$$

weight $=w=m g_{0}=K / r^{2}$

$K=m g_{0} R^{2} \rightarrow F_{r}=-\frac{m_{0} R^{2}}{r^{2}} \quad(r \geq R)$
$V=-m_{0} R^{2} / r \quad(r \geq R)$
(potential energy due to the gravitational field)
Now, $\mathbf{r}=\mathbf{R}+\mathrm{h} \rightarrow \quad \mathrm{V}=-\mathrm{mg}_{0} \mathrm{R} /\{1+(\mathrm{h} / \mathrm{R})\}$

- Near earth's surface $h \ll R \rightarrow \mathbf{h} / \mathbf{R} \ll \mathbf{1}$.

$$
\mathrm{V} \simeq-\operatorname{mg}_{0} \mathrm{R}\{1-(\mathrm{h} / \mathrm{R})\}
$$

- If we choose constant C (reference) so that the potential energy at the surface is zero $\rightarrow \mathrm{V} \simeq \mathrm{mg}_{\mathrm{o}} \mathrm{h}$.

Ex: Potential energy of a linear spring:

 The force in the spring is$\underline{F}_{s}=-F_{s} \underline{e}_{r}=-k\left(r-l_{0}\right) \underline{e}_{r}$
The distance moved by the particle is :
$d \underline{r}=d r \underline{e}_{r}+r d \phi \underline{e}_{\phi}$
\rightarrow The work done is :
$d W=\underline{F}_{s} \bullet d \underline{r}=-k\left(r-l_{0}\right) d r$

$W_{A \rightarrow B}=-\int_{A}^{B} k\left(r-l_{0}\right) d r=\left[k\left(r_{A}-l_{0}\right)^{2}-k\left(r_{B}-l_{0}\right)^{2}\right] / 2$

- V = elastic energy or spring potential energy
$\equiv \frac{1}{2} \mathrm{k} \Delta^{2} \quad, \quad \Delta=\left(\mathrm{r}-\mathrm{l}_{\mathrm{o}}\right)-\underset{\substack{\text { stretch } \\ \text { spring }}}{\sin }$ the

Reading Assignment Ex: 3.6

General form of work-energy principle:

$$
\mathrm{W}_{\mathrm{A} \rightarrow \mathrm{~B}}=\mathrm{V}_{\mathrm{A}}-\mathrm{V}_{\mathrm{B}}+\mathrm{W}_{\mathrm{A} \rightarrow \mathrm{~B}}^{\mathrm{nc}}=\mathrm{T}_{\mathrm{B}}-\mathrm{T}_{\mathrm{A}}
$$

or

$$
\mathrm{T}_{\mathrm{A}}+\mathrm{V}_{\mathrm{A}}+\mathrm{W}_{\mathrm{A} \rightarrow \mathrm{~B}}^{\mathrm{nc}}=\mathrm{T}_{\mathrm{B}}+\mathrm{V}_{\mathrm{B}}
$$

3.5 Linear Impulse and Momentum:

Newton's second law $\rightarrow \underline{F}=\frac{d}{d t}\left(m \underline{v}_{P}\right)=\frac{d}{d t}(\underline{p})$
where $\underline{p} \equiv m \underline{v}_{P}$ - linear momentum of the particle Newton's law used \rightarrow the velocity is measured relative to an inertial frame. Suppose that \underline{F} is given as a function of time. Integrating: $\int_{t_{1}}^{t_{2}} \underline{F}(\tau) d \tau=\int_{t_{1}}^{t_{2}} d(\underline{p}(\tau))=\underline{p}\left(t_{2}\right)-\underline{p}\left(t_{1}\right)$

$$
\rightarrow \underline{\hat{F}} \equiv \int_{t_{1}}^{t_{1}} \underline{F}(\tau) d \tau=\underline{p}\left(t_{2}\right)-\underline{p}\left(t_{1}\right)
$$

$\underline{\hat{F}}$ - impulse of the force \underline{F} over the time interval $\left(\mathrm{t}_{1}-\mathrm{t}_{2}\right)$.

- The change in linear momentum of a particle during a given time interval equals the total impulse (linear) of the forces acting on the particle.
- When the time interval of action is very small, the force is called an impulsive force. Then $\underline{\hat{F}}=\int_{t_{1}}^{t_{2}} \underline{\underline{F}}(t) \mathrm{dt}$ is finite even though $\left(t_{2}-t_{1}\right) \rightarrow 0$. Ex. Forces during impact.

Ex: (Example 4.5)

Find: Total horizontal distance $x_{\text {tot }}$ till the ball continues to bounce; Also, the total time taken.

- Key - consideration of the impact with the floor and the impulsive action. It needs to be used repeatedly.

FBD during an impact:

$\underline{v}_{1}=v_{1 x} \underline{i}+v_{1 y} \underline{j}$
(velocity just before impact).
$\underline{v}_{2}=v_{2 x} \underline{i}+v_{2 y} \underline{j}$
(velocity just after impact).

Impact $\rightarrow \Delta \mathbf{t} \rightarrow \mathbf{0}$.
Applying Impulse-momentum principle:
$\sum F_{x}=0 \rightarrow m v_{2 x}=m v_{1 x} \rightarrow v_{2 x}=v_{1 x}=v_{0}$
$\sum F_{y}=R_{y} \neq 0 \rightarrow-m v_{1 x}+\int_{\Delta t} R_{y} d \tau=m v_{2 x}$

- Nature of the impulsive force R_{y} not known

$$
\int_{\Delta t} R_{y}(\tau) d \tau=\begin{gathered}
\text { area under } \\
\text { the curve }
\end{gathered}
$$

- coefficient of restitution
$e=\frac{\left|v_{2 y}\right|}{\left|v_{1 y}\right|} \rightarrow\left|v_{2 y}\right|=e\left|v_{1 y}\right|$ relates velocities in direction of impact
In general: $\left|v_{(n+1) y}\right|=e\left|v_{n y}\right|$ during nth impact

Schematic representation of motion:

$$
\begin{aligned}
& v_{4 y}=e v_{3 y}=e^{3} \sqrt{2 g h}, \ldots \ldots \ldots
\end{aligned}
$$

Time of flight: $\mathrm{t}_{\mathrm{n}}=$ time between $\mathrm{n}^{\text {th }}$ and $(\mathrm{n}+1)^{\text {th }}$ $t_{n}=2 v_{(n+1) y} / g=2 e v_{n y} / g \quad$ bounce
$t_{0}=$ time to hit the floor 1 st time $=\sqrt{2 g h}$

Total time it takes before ball stop bouncing:

$$
\begin{aligned}
T & =t_{0}+t_{1}+t_{2}+t_{3}+t_{4}+t_{5}+\ldots \ldots \ldots . . \\
& =t_{0}+2 e v_{1 y} / g+2 e v_{2 y} / g+2 e v_{3 y} / g+2 e v_{4 y} / g+\ldots \\
& =\sqrt{2 h / g}+2 e \sqrt{2 h / g}+2 e^{2} \sqrt{2 h / g}+2 e^{3} \sqrt{2 h / g}+\ldots \\
& =\sqrt{2 h / g}\left\{1+2 e+2 e^{2}+2 e^{3}+\ldots \ldots . .\right\} \\
& \left.\rightarrow T=\sqrt{2 h / g}\left\{\frac{1+e}{1-e}\right\} \quad \text { finite time (for } e<1\right) \\
& x_{\text {tot }}=v_{0} T
\end{aligned}
$$

3.6 Angular Momentum and Angular Impulse Recall the definition of linear momentum w.r.t. an inertial frame:

$$
\underline{p}=m \underline{v}_{P}
$$

Moment of linear momentum about a point 0 :

$$
\underline{H}_{O}=\underline{r}_{O P} \times \underline{p}=\underline{r}_{O P} \times m \underline{v}_{P}
$$

(angular momentum about \mathbf{O}). Its rate of change is $\dot{\underline{H}}_{O}=d\left(\underline{\underline{H}}_{O}\right) / d t=\underline{\dot{r}}_{O P} \times m \underline{v}_{P}+\underline{\underline{r}}_{O P} \times m \dot{\underline{v}}_{30}$

- Now, $\quad \dot{\dot{H}}_{O}=d\left(\underline{H}_{O}\right) / d t=\underline{r}_{O P} \times m \underline{\dot{v}}_{P}$
- Newton's Second law: $\underline{F}=m \underline{\dot{v}}_{P}$

$$
\rightarrow \dot{\dot{H}}_{O}=\underline{r}_{O P} \times \underline{F}=\underline{M}_{O}
$$

$\bullet \underline{M}_{O}=\underline{\dot{H}}_{O}$ moment of the net force about a fixed point equals the time rate of change of angular momentum about the same fixed point.

- $\int_{t_{1}}^{t_{1}} \underline{M}_{o}(\tau) d \tau=\hat{\hat{M}}$
Principle of angular
- angular impulse impulse and momentum: $\underline{\hat{M}}=\underline{H}\left(t_{2}\right)-\underline{H}\left(t_{1}\right)$

3.8 Coulomb Friction:

Consider a block A

 sliding on block B with a velocity $\underline{v}_{\mathrm{r}}$ relative to B. (i.e. $\underline{v}_{r}=\underline{v}_{A}-\underline{v}_{B}$)- Classical Coulomb law: when sliding, the friction force $=\mu$ (normal force)

μ - coefficient of sliding friction (depends on the materials and roughness of the sliding surfaces).
- In reality, f also depends on the slip velocity v_{r}.
- When $\mathrm{v}_{\mathrm{r}}=0$, the force $|\mathrm{f}| \leq \mu|\mathrm{N}|$, is determined by Static Equilibrium.

Ex. (Ex. 3.11)
Consider a spring - mass system. There is coulomb friction between the block

and the horizontal surface.
Let, initial conditions: $\mathrm{x}(\mathrm{t}=\mathbf{0})=\mathrm{x}_{\mathrm{o}}, \dot{\mathrm{x}}(\mathrm{t}=0)=0$.
Find: $\quad x(t)$.
Consider the FBD. Assume initial x_{o} such that
$\mathbf{k x}_{\mathrm{o}}>\mathbf{f}=\mu \mathbf{N}=\mu \mathrm{mg}$

\rightarrow block moves

- When $\dot{x}<0$, friction force is to the right;

So, $f=\mu m g$ and $\rightarrow m \ddot{x}+k x=\mu m g$

- When $\dot{x}>0$, friction force is to the left;

$$
\text { So, } f=-\mu m g \text { and } \rightarrow m \ddot{x}+k x=-\mu m g
$$

Note that both the equations are linear. The overall system is nonlinear as the equation used needs to be switched depending on the choice of the sign of $\dot{\mathrm{x}}$. Solution process: Consider $\dot{x}<0$,

$$
\rightarrow m \ddot{x}+k x=\mu m g \text { with } I . C s: x(0)=x_{0}, \dot{x}(0)=0 .
$$

The solution is: $\quad x(t)=x_{h}(t)+x_{p}(t)$

$$
\begin{aligned}
& x_{p}(t)=\mu m g / k ; x_{h}(t)=A \cos \omega_{n} t+B \sin \omega_{n} t \\
& \text { where } \omega_{n}=\sqrt{k / m}
\end{aligned}
$$

Thus, $x(t)=\mu m g / k+A \cos \omega_{n} t+B \sin \omega_{n} t$

$$
\dot{x}(t)=-\omega_{n} A \sin \omega_{n} t+\omega_{n} B \cos \omega_{n} t
$$

Using initial conditions: $\dot{x}(0)=0 \rightarrow B=0$

$$
\rightarrow x(t)=\mu m g / k+A \cos \omega_{n} t
$$

Now $\quad x(0)=x_{0} \rightarrow A=x_{0}-\mu m g / k$
Thus, $x(t)=\mu m g / k+\left(x_{0}-\mu m g / k\right) \cos \omega_{n} t$ for $\dot{x}<0$
This solution is valid till velocity first becomes zero.

The velocity first becomes zero when:
$\dot{x}=0=-\omega_{n}\left(x_{0}-\mu m g / k\right) \sin \omega_{n} t \rightarrow t_{1}=\pi / \omega_{n}$
The time t_{1} is period of 'half cycle'.
Then, $x\left(t_{1}\right)=-x_{0}+2 \mu m g / k ; \quad \dot{x}\left(t_{1}\right)=0$.
Now consider $\underline{\dot{x}>0}: m \ddot{x}+k x=-\mu m g \quad\left(t \geq t_{1}\right)$
The solution is : $x(t)=x_{h}(t)+x_{p}(t)$
or, $x(t)=-\mu m g / k+A \cos \omega_{n} t+B \sin \omega_{n} t$

$$
\dot{x}(t)=\omega_{n}\left(-A \sin \omega_{n} t+B \cos \omega_{n} t\right)
$$

Using initial conditions at $t=t_{1}$,

$$
B=0, A=x_{0}-3 \mu m g / k
$$

Thus, $x(t)=\left(x_{0}-3 \mu m g / k\right) \cos \omega_{n} t-\mu m g / k$

$$
\operatorname{for}\left(\pi / \omega_{n}<t<2 \pi / \omega_{n}\right)
$$

The velocity vanishes again when

$$
\dot{x}(t)=-\omega_{n}\left(x_{0}-3 \mu m g / k\right) \sin \omega_{n} t=0
$$

$$
\rightarrow t_{2}=2 \pi / \omega_{n} \rightarrow x\left(t_{2}\right)=x_{0}-4 \mu m g / k
$$

The period of 'one cycle' $T=t_{1}+t_{2}-t_{1}=2 \pi / \omega_{n}$.
In this duration, the amplitude of oscillation
decreases by $x_{0}-\left(x_{0}-4 \mu m g / k\right)=4 \mu m g / k$.

- In same manner, one can find solutions for succeeding half-cycles.

In the $\mathrm{n}^{\text {th }}$ half-cycle:

$x(t)=(-1)^{n-1} \mu m g / k+\left\{x_{0}-(2 n-1) \mu m g / k\right\} \cos \omega_{n} t$ in the time interval $\left\{(n-1) \pi / \omega_{n}<t<n \pi / \omega_{n}\right\}$

- Clearly, this motion exists provided the spring has enough force to overcome friction.
- For the first half-cycle: $x_{0}>\mu m g / k$.
- For the second half-cycle: $x_{0}-2 \mu m g / k>\mu m g / k$

$$
\text { or } x_{0}>3 \mu \mathrm{mg} / \mathrm{k} \text {. }
$$

- For the third half-cycle: $x_{0}-4 \mu m g / k>\mu m g / k$

$$
\text { or } \quad x_{0}>5 \mu m g / k \text {. }
$$

- For the nth half-cycle: $x_{0}-2(n-1) \mu m g / k>\mu m g / k$

$$
\text { or } \quad x_{0}>(2 n-1) \mu m g / k \text {. }
$$

- If the spring force is not sufficient, the motion

 stops permanently at$$
x=(-1)^{n}\left\{x_{0}-(2 n) \mu m g / k\right\}
$$

at the time $t>n \pi / \omega_{n}$
where \mathbf{n} is the total number of half-cycles.

