CHAPTER 3
DYNAMICS OF A PARTICLE

Newton’s Second Law: It IS an experimentally
derived law, valid in a reference frame —
Inertial reference frame. Z
XYZ - inertial ath
reference frame V
et m be mass,

I'op- POSition vector.
Then X

E — E(L’E’t)1and E(£1 ’t) :d(mLP)/dt — mQ‘P




3.1 Direct Integration of Equations of Motion

Newton’s Law gives: F(r,r,t) =ma,

This needs to be solved, subject to

initial conditions: r(t=t,)=r,; rt=t,)=r,

Case 1: The external force Is a constant.

In Cartesian coordinate system

mX=F, my=F, mZ=F,
Consider the system in x-direction :
X = F,_/m—constant (say'a’) — d(x)/dt = a
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Integrating first by “separation of variables”:

v t
[dx)= [adr > v(t)-v, =at
Vo t=0

or,

v(t) =V, +at

(speed vs. time)

Integrating again: jd(u)z j(vo+ar)dr
Xo

or

X(t) = X, +V t +at’/2

t=0

(position vs. time)

One can also approach the integration with
position as the independent variable:



Let

.2
—( ) = d(x) dx) (chainrule)= xd(x) ax’/2)
dt dx dx
.2
Then, Newton's 2nd Law — d(); 12) _ a
X

Separation of variables — j d(x°/2) = I adu

or, |V® =V +2a(x—X,)| (position vs. speed)
Reading Assignment: Motion of a particle in a
uniform gravitational field.
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Case 2: The external force Is a function of time.
Then, In Cartesian coordinates,
mX = F (t), my=F, (t), mZ=F,(t).

de(X)z ](Fx(r)/m)dr—> V() =V, + j(F (r)/m)dz

0

Similarly, d(x) ={v, + j(F (r)/ m)dz¥d

0

N x(t)=x0+vot+j( I(Fx(s)/m)ds)dr

0 tO =0




Case 3: The force is a function of position.

Special case: F(r)=F ()1 +F,(y)]+F,(2)k

e.g. (example 3.3) F =-kx
(linear, separable function)

Equation of motion : K
| {-/\/\/\/\/\— m]

mx = —kx

Integration: m jd()‘(2/2) = —jkudu

— MV’ =v2)/2=—-k(x*-x)/2




or v =v; —k(x*—xZ)/m  (position vs. speed)
Then, to Iintegrate again, we write as
dx/dt—[v —k(x —x>)/ mJ?

or jdr_ j[v —k(u?=x2)/m]“2du

X0

. X . X
—t=+k/m[sin™ —sin™ 0

JMIKVE + % JMIKVE + %
or |x(t) = \J(m/ k)¢ +x sin(vk /mt+a)

| 2 2
where  a=sin (Xo/\/(m/k)vo ey (position vs. time)
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Case 4: The force is a function of velocity.
Special case: F(f)=F (X)1+F(y)]+F(2)k

EX. 3.4: Projectile with air drag

YCM/PT/:\ drag force ~ velocity
// m \\ E = —m(g i_ cV

‘. Where v=xXI+Y]
O X B

;. —cx=mX (1) J: —-cy—-mg=my (2)
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x-motion:  —cx=m¥X
initial conditions: x(t = 0) = x,, X(t=0) = X,

Integrating:
d(x)/dt =—(c/m)x

de (U)/ U = —t_[(c/m)dr — _(c/m)t

— In(x/%,) =—(c/m)t > [X(t) = x,e"'™

X t
Integrating again : j du = j x,e '™ dr
Xo 0



or x(t) — x, = —(m/c)x,e '™ ‘; = (m/c)x,[1-e ™

— [x(t) =%, +(m/c)x,[L-e '™
y-motion: my+cy = -mg

initial conditions: y(t = O) =Y,, Yt=0)=Yy,

Integrating: jmd(u) _—jdr=—t

cu+mg

ort=—(m/c)i[ dlu) =—(m/c)ln[y+(mglc)]

7u+(mg/c) Yo +(mg /)
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or |y(t) =—(mg/c)+[y, +(mg/c)le '™
Integrating again —»
y(t) =y, —(mg/c)t
+(m/c){y, +(mg/c)}1-e ™
summarizing:x(t) = x, + (m/c)x,[1—e '™
X(t) = x,e '™

as t — oo, X(t) > 0, x(t) > x, +mx,/c

(limiting x-displacement)
of c=0, x(t)=Xx, (remainsconstant)
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X(t) = 0 ast — oo (unbounded x-displacement)

y(t) — —(mg /C) + [yo + (mg /C)]e—(C/m)t
y(t) =Y, —(mg/cht

+(m/e)X{y, +(mg/c)HL-e™']
ast —= o, y(t) > —(mg/c) (terminal speed)

y(t) > —oo (unbounded)

If c=0, y(t) — —oo, y(t) — —oo.(both unbounded)
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3.2 Work and Kinetic Energy

Imp: for a particle, the work-energy approach
is derivable from Newton’s law for the particle,
and gives no new Iinformation; it provides

further insight.
Consider a particle
moving along a path,
starts at A, goes to B.
Let, when at position
P, a force Facton
the particle.




dr - small change In position;
F=mr Newton’s 2nd Law

Defn: Work done by the force acting on the
particle in a small (infinitesimal) displacement

IS: dW=Fedr.
Dot product with Newton’s law — j Fedr

- [t edr = m Jld(t o 1)/201101 = m [a(47)/2
A, A ’

B
— [Eedr =W, , =m[d(v*)/2=m(v; -v})/2
A

La 14



Let T=mv°/2=mvev/2 -Kkinetic energy of
the particle

W, =T, -T,=m(vi —v3)/2 principle of
work and Kinetic energy
3.3 Conservative Foreces:

Suppose that the force F acting is such that

1) it is a single-valued function only of
position, that is, F does not explicitly
depend on t;

B
2) the line integral JE -dr only depends on
end points A
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—> C}E edr =0
One then says that:
The force Is

conservative or the O

mechanical process / A
is reversible y X

« dW =F edr must be an exact differential
=-d(v) (-vesignisfor convenience)
V - potential energy associated with the force.
B B B
Then, \y _ [dW = [Fedr =—[dV =V, -V,
A A A
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* Decrease In potential energy in moving the
particle from A to B equals the work done on

the particle.

Let E=T + V; itis called the total energy.
If the only force acting on the particle is a
conservative force: Wase=Va—Vg=Tg-1Tx

— |T,+V,=T; +Vg| principle of
conservation of
mechanical energy
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3.4 Potential Energy
Recall: for a force dependent only on position,

If a potential function exists: V depends only on
position -V =V(X,y, z) (in Cartesian system)
dV = (oV/ox)dx+ (6V /oy)dy + (oV /oz)dz

For the work done by the force:
F=FI1+F, j+FKk, dr =dxi +dyj +dzk

—> dW =F edr =-dV —>FX:—6—V,Fy:—a—V,FZ:—a—V
OX oy 0Z
—> E:—ﬁl—ﬁj—ﬁgz—vv (gradientof V)
OX oy - 0z
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EXx: Inverse-square law of attraction:

The force exerted by the attracting field is
radial: g __9V __K

T r
K

—>V =——+C (may choose C =0)
r

gravitational potential energy: m
h r

earth

F=-—K/r’;r>R
weight =w=mg, = K/r?

e




mgOR2

> (r>R)

K:mgoR2 - F=-
V=-mg,R2/r (r=R) '
(potential energy due to the gravitational field)
Now, r=R+h —» V=-mg ,R/{1+(h/R)}
e Near earth’s surface h<<R > h/R << 1.

V =-mg R{1- (h/R)}

* If we choose constant C (reference) so that
the potential energy at the surface Is

zero—> V = mg,h.
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Ex: Potential energy of a linear spring:
The force In the spring Is
F.=-Fe, =-k(r-lye,
Thedistance moved by the

particlelis: O r
dr =dre, +rdge, %\

— Theworkdonels:

W = E. edr =—k(r—I,)dr /A

Wy = — [k(r—L)dr = [k(r, 1) —K(r, ~1,)%1/2



= elastic energy or spring potential energy

EEkAZ , A=(r—1,) - stretch in the

2 spring
Reading Assignment EXx: 3.6

General form of work-energy principle:
Wa g =Va~Ve+Wa',g =Tz~ Ta

or

TA +VA +W£C—>B :TB +VB
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3.5 Linear Impulse and Momentum:

Newton’s second law —» F — di(mvp) = di(p)

where p =myv, —linear momentum of the particle

Newton’s law used — the velocity Is
measured relative to an inertial frame.
Suppose that F is given as a function of time.

Integrating: t}E(T)dT :t}d (p(7)) = p(t,) - p(t,)

|E = [E()dr = p(t,) - p(t)
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A

F - impulse of the force F over the time
“interval (t; —t,).

* The change in linear momentum of a
particle during a given time interval equals
the total impulse (linear) of the forces
acting on the particle.

* When the time interval of action is very
small, the force is called an impulsive force.
Then E = J't F(t)dt is finite even though

(t, —t,) — 0. Ex. Forces during impact.
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Ex: (Example 4.5)
Mg — Vo e=0.9 Y

_ _ _ émooth floor
Find: Total horizontal distance X, till the ball

continues to bounce: Also, the total time taken.

» Key - consideration of the impact with the
floor and the impulsive action. It needs to be
used repeatedly.
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FBD during an impact:

vV, =V, I +Vlyi v,

IxX—

(velocity just before impact).
V, =V, i +v, j T

— 2X—

(velocity just after impact).
Impact »> At — 0.
Applying Impulse-momentum principle:

Z _x — O —> mVZX — mle _>V2X :le :VO

Z |:y — Ry # O—)—mle + '[Rydz' — mvzx
At
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» Nature of the impulsive force R, not known

Ry(t) j R, (r)dz =area under
At thecurve

At

O
t

o coefficient of restitution

V2y .- .
e = >V, | =elv,,| relates velocities in
Viy direction of impact
Ingeneral : v, [=ev, | during nth impact
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Schematic representation of motion:

Vly R sz V3y
V,,=V(2gh) y V4v' vy K
. 4
Now t, t, t,
V,, =€V, Vy, =ev, =e’v, =e’\/2gh

Vy, =€V, =€’2gh,.........
Time of flight: t,= time between n™ and (n +1)th
1:n = 2V(n+1)y / g= ZeVny / g bounce

t, = timeto hit the floor1st time = /2gh
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Total time It takes before ball stop bouncing:
T=t+t,+t, +0,+1, +L +...........

=t, +2ev,, /g+2ev, /g+2ev, [g+2ev,, /g+..

:\/2

n/g+2ey2h/g+2e°2h/g+2e°2hig +..

:\/2

N/ g{l+2e+2e°+2e°+........ }

—>|T =

th/g{T—e} _ finite time (for e <1)
—e

Xiot = VOT
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3.6 Angular Momentum and Angular Impulse
Recall the definition of linear morznentum Ww.r.t.

an inertial frame:
p=my, W

Moment of linear

momentum about O

a point O: X

Ho =Top X P=Top xXMVp

(angular momentum about O). Its rate of
change is Ho =d(Hy)/dt=Foo xmv, + 1o xmy,
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*Now, H,=d(Hp)/dt=rg, xmy,
« Newton’s Second law: F =mv,

— H, =r,, xF =M,
. — moment of the net force about a

fixed point equals the time rate of

change of angular momentum
about the same fixed point.

o j'\/' (rYdz=M - angular impulse

1<
@)

|
T
@)

Prmmple of angular
Impulse and momentum:1=

=H(t,)-H(t)
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3.8 Coulomb Friction:

A

v. Consider a block A
sliding on block B with a

velocity v, relative to B.

J B

L (i.e. v,=v,—Vg)

 Classical Coulomb law: lw y
when sliding, the friction A —
force = p (normal force) N

N
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-uN

u - coefficient of sliding friction (depends on the
materials and roughness of the sliding
surfaces).

* In reality, f also depends on the slip velocity v,.
» WhenV, =0, the force |f| < u|N|, is
determined by Static Equilibrium.
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Ex. (Ex. 3.11)

Consider a spring - mass < 7
system. There iIs coulomb {—/\/\/\/\/\— m[
friction between the block Ny

and the horizontal surface. |
Let, initial conditions:x (t = 0) =X, X(t=0)=0.

Find:  Xx(t).
Consider the FBD. mg

.. y
Assume Initial X, Ky ! ‘
such that ‘ X
KX,>f=puN=pmg f ‘N

— block moves "



* When x <0, friction forceisto theright;

So, f =umg and — mX+kx=umg
« When x> 0,frictionforceisto the left;

So, f =—pumg and — mX+kx=—-umg
Note that both the equations are linear. The
overall system is nonlinear as the equation
used needs to be switched depending on the

choice of the sign of X.
Solution process: Consider x <0,

— mX +kx = umg with 1.Cs:x(0) = x,, X(0) =0.
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The solution iIs:

X(t) = X, (t) + %, (t)

X, () = umg /k; x,(t) = Acosao t+Bsina,t

wherew, =k/m

Thus, x(t) = umg/k + Acosm t + Bsin

X(t) =—w,Asinw t+w Bcosw,t

Using initial conditions : x(0) =0 > B =0

Now

Nus,

— X(t) = umg /k + Acosa,t

X(0) =X, > A=Xx,—umg/k

X(t) = umg/

K+ (X, —umg/Kk)cosm,t| for x <0

ni1ssolution is valid

till velocity first becomes zero.
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The velocity first becomes zero when:
X=0=-w, (X —umg/K)sinot >t =x/w,
The time Ty1s period of ‘half cycle’.
Then, x(t,) =—x,+2umg/k; x(t,) =0.
Now consider x >0: mX+kx=—-umg (t=>t,))
Thesolutionis: x(t) = x, (t) + X, (t)
or, X(t)=—umg/k + Acosw,t+Bsinm.t
X(t) =w,(—Asinw t+Bcosw,t)
Using initial conditionsatt =t
B=0, A=x,—-3umg/k
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Thus, X(t)=(X,—3umg/k)coswt—umg/k
for(z/o, <t<27lw,)
The velocity vanishes again when
X(t) =—w, (X, —3umg/k)sinem t=0

—>t, =27lw, > X(t,) =%, —4umg /K
The period of ‘one cycle’ T=t;+t, -t; =2 7lo .
In this duration, the amplitude of oscillation
decreases by X, — (X, —4xmg/k) =4 mglk.

* In same manner, one can find solutions for
succeeding half-cycles.
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In the n™ half-cycle:
X(t) = (D" umg /K +{x, — (2n—1) umg / k}cos ot

Inthetimeinterval {(n-)z /o, <t<nz/w. }

e Clearly, thismotion exists provided the spring has

enough force to overcome friction.

e For thefirst half-cycle:

or

X, > pmg /K|

X, —2umg/k > umg /K

X, >3umg/k|
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e Forthethirdhalf-cycle: x, —4umg/k > umg /k

or |X,>5umg/k|

. X, —2(n—=1)zmg /k > pzmg [k

or |X,>(2n-1)umg/k]|
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 |f the spring force is not sufficient, the motion
stops permanently at

X = (=1)"{X, — (2n) umg / k}
atthetime t>nrz/w,
where n is the total number of half-cycles.

Linear decay

~~~
—
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