7.13 Eulerian Angles

- Rotational degrees of freedom for a rigid body - three rotations.
- If one were to use Lagrange's equations to derive the equations for rotational motion - one needs three generalized coordinates.
- Nine direction cosines with six constraints given by $[l]^{T}[l]=[1]$ are a possible choice. That will need the six constraint relations to be carried along in the formulation. Not the most convenient.
- One could use the angular velocity components $\omega_{x}, \omega_{y}, \omega_{z}$ to define the rotational kinetic energy. There do not exist three variables which specify the orientation of the body and whose time derivatives are the angular velocity components $\omega_{x}, \omega_{y}, \omega_{z}$
- Need to search for a set of three coordinates which can define the orientation of a rigid body at every time instant;
- A set of three coordinates - Euler angles.
- many choices exist in the definition of Euler angles - Aeronautical Engineering (Greenwood's)

- xyz system attached to the rigid body; XYZ system is the fixed system attached to ground
- Two systems are initially coincident; a series of three rotations about the body axes, performed in a proper sequence, allows one to reach any desired orientation of the body (or xyz) w.r.t. XYZ.
- First rotation: a positive rotation ψ about Z or z axis $\rightarrow x^{\prime} y^{\prime} z^{\prime}$ system
- ψ - heading angle

$\begin{aligned} & \begin{array}{l}\text { Clearly, the } \\ \text { rotation is } \\ \text { defined by: }\end{array}\end{aligned}\left\{\begin{array}{l}x^{\prime} \\ y^{\prime} \\ z^{\prime}\end{array}\right\}=\left[\begin{array}{ccc}\cos \psi & \sin \psi & 0 \\ -\sin \psi & \cos \psi & 0 \\ 0 & 0 & 1\end{array}\right]\left\{\begin{array}{l}X \\ Y \\ Z\end{array}\right\}$

Line of nodes

2nd rotation:a

 positive rotation θ about y' axis $\rightarrow x " y " z " s y s t e m$$$
\mathrm{z} " \quad \mathrm{z}
$$

The resulting
rotation is:

y^{\prime \prime}

z^{\prime \prime}\end{array}\right\}=\left[$$
\begin{array}{ccc}\cos \theta & 0 & -\sin \theta \\
0 & 1 & 0 \\
\sin \theta & 0 & \cos \theta\end{array}
$$\right]\left\{$$
\begin{array}{l}x^{\prime} \\
y^{\prime} \\
z^{\prime}\end{array}
$$\right\}\)
θ-attitude angle $-\pi / 2 \leq \theta \leq \pi / 2$

- 3rd rotation: a positive rotation ϕ about the $x^{\prime \prime}$ axis \rightarrow xyz system
ϕ - bank angle
$0 \leq \phi \leq 2 \pi$

Note that $\mathbf{O y}$ " is in XY plane.
When $\phi=\pi / 2 \Rightarrow \mathrm{xy}$ plane vertical

$$
\left\{\begin{array}{l}
x \\
y \\
z
\end{array}\right\}=\left[\begin{array}{ccc}
1 & 0 & 0 \\
0 & \cos \phi & \sin \phi \\
0 & -\sin \phi & \cos \phi
\end{array}\right]\left\{\begin{array}{l}
x^{\prime \prime} \\
y^{\prime \prime} \\
z^{\prime \prime}
\end{array}\right\}
$$

The transformation equations in more compact form can be written as:

$$
\begin{gathered}
\left\{r^{\prime}\right\}=[\psi]\{R\} \\
\left\{r^{\prime \prime}\right\}=[\theta]\left\{r^{\prime}\right\} \\
\{r\}=[\phi]\left\{r^{\prime \prime}\right\} \\
\text { or } \quad\{r\}=[\phi][\theta][\psi]\{R\}
\end{gathered}
$$

- Since $[\psi],[\theta],[\phi]$ are orthogonal, so is the final matrix $[\phi][\theta][\psi]$.
$\{R\}=[x]^{T}[\theta]^{T}[\phi]^{T}\{r\}$ gives the inverse transformation.
- Any possible orientation of the body can be attained by performing the proper rotations in the given order.
- Important: if the orientation is such that x axis is vertical \rightarrow no unique set of values for ψ and ϕ can be found.
i.e., if $\theta= \pm \pi / 2$, the angles ψ and ϕ are undefined. However, $(\psi-\phi)$ is well defined when $\theta=\pi / 2$ - it is the angle between the x and z axes. Similarly, $(\psi+\phi)$ well defined when $\theta=-\pi / 2$.
- In such situations, called singular, only two rotational degrees are represented.
8.2 Angular Velocities in terms of Eulerian Angles

- it along z^{\prime}
- $\dot{\Phi}$ along x
- $\underline{\dot{\theta}}$ along $y^{\prime}, y^{\prime \prime}$

Now : $\quad \underline{\omega}=\underline{\psi}+\underline{\dot{\theta}}+\underline{\dot{\phi}}$
In component form

$$
\{\omega\}=[\phi][\theta]\{\dot{\psi}\}+[\phi]\{\dot{\theta}\}+\{\dot{\phi}\}
$$

where $\{\dot{\phi}\}=\{\dot{\phi}, 0,0\}^{\top}$

$$
\{\dot{\theta}\}=\{0, \dot{\theta}, 0\}^{\top}
$$

and

$$
\{\dot{\psi}\}=\{0,0, \dot{\psi}\}^{\top} .
$$

combining \Rightarrow

$$
\begin{aligned}
& \omega_{x}=\dot{\phi}-\dot{\psi} \sin \theta \\
& \omega_{y}=\dot{\theta} \cos \phi+\dot{\psi} \cos \theta \sin \phi \\
& \omega_{z}=\dot{\psi} \cos \theta \cos \phi-\dot{\theta} \sin \phi
\end{aligned}
$$

These are the relations in angular velocity and rates of change of Euler angles.

7.13 Eulerian Angles

Review:
To define the orientation of a body with respect to a fixed frame,

- let XYZ be the fixed frame
- let xyz be the frame attached to the body
- let xyz and XYZ coincide initially
- Perform a sequence of three rotations in a specified order about axes fixed to the body and arrive at the desired (final) position angles called Euler angles.
- One possible sequence:

1st rotation: a positive rotation x about $\mathrm{z}(\mathrm{Z})$
axis \rightarrow body axes now $x^{\prime} y^{\prime} z^{\prime}$
ψ - heading angle.

2nd rotation: a positive rotation θ about the y^{\prime} axis \rightarrow body axes now $x^{\prime \prime} y^{\prime \prime} z^{\prime \prime}$.
θ - attitude angle
3rd rotation: a positive rotation ϕ about the $x^{\prime \prime}$ axis body axes now xyz (final position of the body). ϕ - bank angle

- cumulatively $\{r\}=[\phi][\theta][\psi]\{R\}$

cumulatively

$\left\{\begin{array}{l}x \\ y \\ z\end{array}\right\}=\left[\begin{array}{ccc}\cos \psi \cos \theta & \sin \psi \cos \theta & -\sin \theta \\ (-\sin \psi \cos \phi & (\cos \psi \cos \phi & \cos \theta \sin \phi \\ +\cos \psi \sin \theta \sin \phi) & +\sin \psi \sin \theta \sin \phi) & \\ (\sin \psi \sin \phi & (-\cos \psi \sin \phi & \cos \theta \cos \phi \\ +\cos \psi \sin \theta \cos \phi) & +\sin \psi \sin \theta \cos \phi) & \end{array}\right]\left\{\begin{array}{l}X \\ Y \\ Z\end{array}\right\}$

7.14 Rigid Body Motion in a Plane

The equations of motion for a rigid body are:

1. $\underline{F}=m \ddot{\underline{r}}_{c}$

Translational motion of the center of mass
2. $\underline{M}_{p}=\frac{d}{d t} \underline{H}_{p}+\underline{\rho}_{c} \times m \ddot{\underline{r}}_{p}$
$\mathrm{P}=$ an arbitrary point,
$\underline{\rho}_{c}$ - position of center of mass relative to P.

For a rigid body

- $\underline{\omega}=\omega_{x} \underline{\ell}+\omega_{y \underline{1}}+\omega_{z} \underline{k}$ - angular vel. in body fixed axes

$$
\text { - } \begin{aligned}
H_{1} & =H_{x} \underline{\imath}+H_{y} \underline{f}+H_{z} k \\
H_{x} & =I_{x x} \omega_{x}+I_{x y} \omega_{y}+I_{x z} \omega_{z} \\
H_{y} & =I_{y x} \omega_{x}+I_{y y} \omega_{y}+I_{y z} \omega_{z} \\
H_{z} & =I_{z x} \omega_{x}+I_{z y} \omega_{y}+I_{z z} \omega_{z} .
\end{aligned}
$$

- Inertia properties relative to $x y z$ at ?

Planar motion: $\omega_{y}=\omega_{x}=0$
ie, all rotations about z axis, which remains parallel to Z axis.

$$
\Rightarrow H_{x}=I_{x z} \omega_{z}, H_{y}=I_{y z} \omega_{z}, H_{z}=I_{z z} \omega_{z}
$$

- Suppose that the products of inertia $I_{x z}=I_{y z}=0$, ie, $x y$ plane is a plane of symmetry of the body

$$
\Rightarrow \quad \underline{H}=I_{z z} \omega_{z} \underline{R}
$$

$\frac{d}{d t} \underline{H}=I_{z z} \alpha_{z} \underline{k}$ for body fixed axes
\Rightarrow Equations for planar motion:

$$
\begin{aligned}
& \underline{F}=m \ddot{r}_{c} \\
& M_{P}=\left(I_{z z}\right)_{P} \alpha_{z} \underline{k}+\underline{p}_{c} \times m \ddot{r}_{p}
\end{aligned}
$$

special case:

$$
\begin{aligned}
& P=C \quad \text { or } \quad P=0(\text { a fixed point }) \\
& \Rightarrow \quad M_{P}=\left(I_{z z}\right)_{P} \alpha_{z} \underline{k}
\end{aligned}
$$

Reading assignment: Examples 7.5 to 7.10.

Ex (Ex ${ }^{7-8}$ in text)
A thin homogeneous rod of length l and mass M displaced, slightly from its
 initial position $\theta=90^{\circ}$ (vertical position).
a) Find angle θ at which end A leaves the wall.
b) Find expressions for $\underline{\alpha}$ and $\underline{\omega}$ after end A has left the wall (subsequent motion)

Case a: ends A and B remain in contact.

$$
\begin{aligned}
& \underline{r}_{G}=\frac{\ell}{2} \sin \theta \underline{\imath}+\frac{l}{2} \cos \theta \underline{\underline{z}} \\
& \dot{\underline{r}}_{G}=\dot{\theta} \frac{l}{2}(\cos \theta \underline{l}-\sin \theta \underline{\underline{z}})
\end{aligned}
$$

$$
\begin{aligned}
\ddot{r}_{G}= & \left(\ddot{\theta} \frac{l}{2} \cos \theta-\dot{\theta}^{2} \frac{l}{2} \sin \theta\right) l \\
& -\left(\ddot{\theta} \frac{l}{2} \sin \theta+\dot{\theta}^{2} \frac{l}{2} \cos \theta\right)
\end{aligned}
$$

Translation:

$$
\left[5 \underline{\imath}+Q_{f}-M g \underline{\imath}=\operatorname{mq}_{\underline{q}} \ddot{\ddot{r}}_{G}\right] \text { (1) }
$$

Taking dot product with $\mathcal{f} \Rightarrow$

$$
\begin{equation*}
Q=-M\left(\frac{l}{2} \sin \theta \ddot{\theta}+\frac{l}{2} \cos \theta \dot{\theta}^{2}\right) \tag{2}
\end{equation*}
$$

- Rod leaves wall \Rightarrow when $Q=0$ or

$$
\begin{equation*}
\sin \theta \ddot{\theta}+\cos \theta \dot{\theta}^{2}=0 \tag{3}
\end{equation*}
$$

Taking dot product with $\leq \Rightarrow$

$$
\begin{equation*}
S-M g=M\left(\frac{l}{2} \cos \theta \ddot{\theta}-\frac{l}{2} \sin \theta \dot{\theta}^{2}\right) \tag{4}
\end{equation*}
$$

Rotational Motion:

$$
\begin{align*}
& \text { tonal Motion : } \\
& \sum \underline{M}_{G}=I_{z z} \alpha \underline{R} \tag{5}\\
& Q \frac{l}{2} \sin \theta-s \frac{l}{2} \cos \theta=\frac{1}{12} M l^{2} \ddot{\theta}
\end{align*}
$$

Eliminate Q and S from equations (2), (4) and (5) \Rightarrow

$$
\begin{aligned}
& \text { (5) } \left.\Rightarrow \text { g(} \frac{l}{2} \sin \theta \ddot{\theta}+\frac{l}{2} \cos \theta \dot{\theta}^{2}\right) \frac{l}{2} \sin \theta \\
& -\frac{l}{2} \cos \theta\left[M / g+\mu\left(\frac{l}{2} \cos \theta \ddot{\theta}-\frac{l}{2} \sin \theta \dot{\theta}^{2}\right)\right] \\
& \quad=\frac{1}{12} M l^{2} \ddot{\theta} \\
& \text { or } \quad-\left(\frac{l}{2} \sin \theta\right)^{2} \ddot{\theta}-\left(\frac{l}{2}\right)^{2} \sin \theta \cos \theta \dot{\theta}^{2} \\
& -g \frac{l}{2} \cos \theta-\left(\frac{l}{2}\right)^{2} \cos ^{2} \theta \ddot{\theta}+\left(\frac{l}{2}\right)^{2} \sin \theta \cos \theta \dot{\theta}^{2} \\
& \\
& \quad=\frac{1}{12} l^{2} \ddot{\theta}
\end{aligned}
$$

or

$$
\begin{array}{ll}
r & -\frac{l^{2}}{4} \ddot{\theta}-\frac{1}{12} l^{2} \ddot{\theta}=g \frac{l}{2} \cos \theta \\
\Rightarrow & \ddot{\theta}=-\frac{3 g}{2 l} \cos \theta \quad \text { (6) } \tag{6}
\end{array}
$$

we want to integrate this equation to fid how $\dot{\theta}^{2}$ depends on θ, (why?) Since we want to find angle θ at which the bar leaves the wall at A, given by (3).

- $\ddot{\theta}=\dot{\theta} \frac{d(\dot{\theta})}{d \theta}$ (change of independent variable)
(6) $\Rightarrow \frac{1}{2} \frac{d}{d \theta} \dot{\theta}^{2}=-\frac{3 g}{2 l} \cos \theta$

Integrating $\Rightarrow \dot{\theta}^{2}=-\frac{3 g}{l} \sin \theta+C$
at $\theta=\pi / 2, \dot{\theta}=0 \Rightarrow C=3 \mathrm{~g} / \mathrm{l}$

$$
\begin{equation*}
\Rightarrow \dot{\theta}^{2}=\frac{3 g}{l}(1-\sin \theta) \tag{ㄱ}
\end{equation*}
$$

- condition for bar leaving the wall

$$
\begin{align*}
& (Q=0): \\
& \sin \theta \ddot{\theta}+\cos \theta \dot{\theta}^{2}=0 \tag{3}
\end{align*}
$$

$$
\begin{aligned}
& \text { (6), (7) in (3) } \Rightarrow \\
& -\frac{3 g}{2 t} \sin \theta \cos \theta+\frac{3 g}{t} \cos \theta-\frac{3 g}{t} \sin \theta \cos \theta=0 \\
& \text { or }-\frac{3}{2} \sin \theta=-1 \Rightarrow \theta_{0}=\sin ^{-1}(2 / 3)
\end{aligned}
$$

Then $(7) \Rightarrow \quad \dot{\theta}_{0}=-\sqrt{\% / l}$ (8)

B After leaving

$$
\begin{aligned}
& \text { The wall } \\
& \underline{r}_{G}=\frac{l}{2} \sin \theta \underline{\imath}+y \underline{\jmath}
\end{aligned}
$$

(Note: the number
 of degrees of freedom has increased by one)
\Rightarrow we use θ and y as the independ. coordinates.

$$
\begin{align*}
& \dot{\underline{r}}_{G}=\dot{y} \underline{\underline{y}}+\frac{\ell}{2} \cos \theta \dot{\theta} \underline{\imath} \\
& \ddot{\underline{r}}_{G}=\ddot{y} \underline{\underline{y}}+\frac{\ell}{2}\left\{\cos \theta \ddot{\theta}-\sin \theta \dot{\theta}^{2}\right\} \underline{\imath} \tag{9}
\end{align*}
$$

Translation:

$$
\begin{align*}
& \Sigma \underline{E}= S \underline{\imath}-M g \underline{\imath}=M \ddot{r}_{G} \\
&=\frac{M \ell}{2}\left(\cos \theta \ddot{\theta}-\sin \theta \dot{\theta}^{2}\right) \imath+M \ddot{y} \underline{\jmath} \\
& \text { d: } M \ddot{y}=0 \Rightarrow \ddot{y}=0 \quad \text { (II) } \tag{II}
\end{align*}
$$

$$
\begin{equation*}
\underline{\underline{\imath}} \quad S-M g=\frac{M l}{2}\left\{\cos \theta \ddot{\theta}-\sin \theta \dot{\theta}^{2}\right\} \tag{12}
\end{equation*}
$$

Rotational:

$$
\begin{gather*}
\Sigma M_{G}=-\frac{l}{2} \cos \theta S \quad \underline{k}=\frac{1}{12} M l^{2} \ddot{\theta} \quad \underline{k} \\
\Rightarrow \quad S=-M l \ddot{\theta} / 6 \cos \theta \quad \text { (13). } \tag{13}
\end{gather*}
$$

$(12),(13) \Rightarrow$

$$
\begin{array}{r}
-\frac{1}{6} M l \ddot{\theta}-M g \cos \theta=\frac{M l}{2}\left\{\cos ^{2} \theta \ddot{\theta}-\sin \theta \cos \theta\right. \\
\left.\times \dot{\theta}^{2}\right\}
\end{array}
$$

$$
\Rightarrow-\frac{6 g}{l} \cos \theta=\left(1+3 \cos ^{2} \theta\right) \ddot{\theta}-3 \sin \theta \cos \theta \dot{\theta}^{2}
$$

Again: $\quad \ddot{\theta}=\frac{1}{2} \frac{d}{d \theta} \dot{\theta}^{2}$

$$
\begin{align*}
& \text { (14) } \Rightarrow-\frac{6 g}{l} \cos \theta=\frac{\left(1+3 \cos ^{2} \theta\right)}{2} \frac{d}{d \theta}\left(\dot{\theta}^{2}\right) \\
& -3 \sin \theta \cos \theta \dot{\theta}^{2} \\
& =\frac{d}{d \theta}\left(\left(\frac{1+3 \cos ^{2} \theta}{2}\right) \dot{\theta}^{2}\right) \\
& \text { Integrating } \Rightarrow \quad\left(1+3 \cos ^{2} \theta\right) \dot{\theta}^{2}=-\frac{12 g}{l} \sin \theta+C \tag{15}
\end{align*}
$$

Initial conditions:

$$
\begin{align*}
& \theta=\theta_{0}=\sin ^{-1}(2 / 3), \dot{\theta}_{0}=-\sqrt{g / l} \\
\Rightarrow & c=\frac{32}{3} \frac{g}{l} \\
\text { or } & \dot{\theta}^{2}\left(1+3 \cos ^{2} \theta\right)+\frac{12 g}{l} \sin \theta=\frac{32}{3} \frac{g}{l} \tag{16}
\end{align*}
$$

This relates $\dot{\theta}$ to θ at any position.

