7.13 Eulerian Angles

- Rotational degrees of freedom for a rigid body - <u>three rotations</u>.
- If one were to use Lagrange's equations to derive the equations for rotational motion
 one needs three generalized coordinates.
- Nine direction cosines with six constraints given by [l]^T[l] = [1] are a possible choice. That will need the six constraint relations to be carried along in the formulation. Not the most convenient.

- One could use the angular velocity components $\omega_x, \omega_y, \omega_z$ to define the rotational kinetic energy. There do not exist three variables which specify the orientation of the body and whose time derivatives are the angular velocity components $\omega_x, \omega_y, \omega_z$
- Need to search for a set of three coordinates which can define the orientation of a rigid body at every time instant;

- A set of three coordinates Euler angles.
- many choices exist in the definition of Euler angles - Aeronautical Engineering (Greenwood's)

- xyz system attached to the rigid body; XYZ system is the fixed system attached to ground
- Two systems are initially coincident; a series of three rotations about the body axes, performed in a proper sequence, allows one to reach any desired orientation of the body (or xyz) w.r.t. XYZ.
- First rotation: a positive rotation ψ about Z or z axis $\rightarrow x'y'z'$ system
- ψ <u>heading angle</u>

Clearly, the rotation is defined by:

$$\begin{cases} x'\\y'\\z' \end{cases} = \begin{bmatrix} \cos\psi & \sin\psi & 0\\ -\sin\psi & \cos\psi & 0\\ 0 & 0 & 1 \end{bmatrix} \begin{cases} X\\Y\\Z \end{cases}$$

• **3rd rotation:** a positive rotation ϕ about the x'' axis \rightarrow xyz system

$$\begin{cases} x \\ y \\ z \end{cases} = \begin{bmatrix} 1 & 0 & 0 \\ 0 & \cos\phi & \sin\phi \\ 0 & -\sin\phi & \cos\phi \end{bmatrix} \begin{cases} x'' \\ y'' \\ z'' \end{cases}$$

The transformation equations in more compact form can be written as:

$$\{r'\} = [\psi] \{R\}$$

$$\{r''\} = [\theta] \{r'\}$$

$$\{r\} = [\phi] \{r''\}$$

$$or \quad \{r\} = [\phi] [\theta] [\psi] \{R\}$$

Since [ψ], [θ], [φ] are orthogonal, so is the final matrix [φ][θ][ψ].

 $\{R\} = [x]^T [\theta]^T [\phi]^T \{r\}$ gives the inverse transformation.

- Any possible orientation of the body can be attained by performing the proper rotations in the given order.
- Important: if the orientation is such that xaxis is vertical → no unique set of values for ψ and φ can be found.

i.e., if $\theta = \pm \pi/2$, the angles ψ and ϕ are undefined. However, $(\psi - \phi)$ is well defined when $\theta = \pi/2$ - it is the angle between the x and z axes. Similarly, $(\psi + \phi)$ well defined when $\theta = -\pi/2$.

- In such situations, called <u>singular</u>, only two rotational degrees are represented.

8.2 Angular Velocities in terms of Eulerian Angles

· i along z' • \$ along x · è along y', y" <u>Now</u>: $\underline{\omega} = \underline{\psi} + \underline{\theta} + \underline{\phi}$ In component form $\{\omega\} = [\phi][\theta]\{\dot{\psi}\} + [\phi]\{\dot{\theta}\} + \{\dot{\phi}\}$ where $\{\dot{\phi}\}=\{\dot{\phi}, 0, 0\}^T$

12

$$\{\dot{\theta}\} = \{0, \dot{\theta}, 0\}^{T}$$

and
$$\{\dot{\psi}\} = \{0, 0, \dot{\psi}\}^{T}.$$

combining \Rightarrow
$$\omega_{\chi} = \dot{\phi} - \dot{\psi}\sin\theta$$

$$\omega_{\chi} = \dot{\phi} \cos\phi + \dot{\psi}\cos\theta\sin\phi$$

$$\omega_{\chi} = \dot{\psi}\cos\theta\cos\phi - \dot{\theta}\sin\phi$$

These are the relations in angular velocity and

rates of change of Euler angles.

7.13 Eulerian Angles

<u>Review</u>:

To define the orientation of a body with respect to a fixed frame,

- let XYZ be the fixed frame
- let xyz be the frame attached to the body
- let xyz and XYZ coincide initially

- Perform a sequence of three rotations in a specified order about axes fixed to the body and arrive at the desired (final) position angles called **Euler angles**.
- One possible sequence:
 <u>1st rotation</u>: a positive rotation x about z (Z) axis → body axes now x'y'z'
 ψ <u>heading angle</u>.

<u>2nd rotation</u>: a positive rotation θ about the y'axis \rightarrow body axes now x''y''z''. θ - <u>attitude angle</u>

<u>3rd rotation</u>: a positive rotation ϕ about the *x*" axis body axes now xyz (final position of the body). ϕ - <u>bank angle</u>

• cumulatively $\{r\} = [\phi][\theta][\psi]\{R\}$

cumulatively

7.14 Rigid Body Motion in a Plane

The equations of motion for a rigid body are:

1.
$$\underline{F} = m\underline{\ddot{r}}_{c}$$
 Translational motion
of the center of mass
2. $\underline{M}_{p} = \frac{d}{dt}\underline{H}_{p} + \underline{\rho}_{c} \times m\underline{\ddot{r}}_{p}$

P = an arbitrary point,

 $\underline{\rho}_c$ - position of center of mass relative to P.

• $H = H_{\chi} \leq + H_{y} \neq + H_{z} k$ $H_{\chi} = I_{\chi\chi} \omega_{\chi} + I_{\chiy} \omega_{\chi} + I_{\chi^2} \omega_{\chi}^2$ $H_{y} = I_{yx} \omega_{x} + I_{yy} \omega_{y} + I_{yz} \omega_{z}$ $H_{z} = I_{zx} \omega_{x} + I_{zy} \omega_{y} + I_{zz} \omega_{z}$ • Inertia properties relative to xyz at P. Planar motion: wy = w x=0 i.e., all rotations about z axis, which remains parallel to Z axis.

 $\Rightarrow H_{\chi} = I_{\chi z} \omega_{z}, H_{y} = I_{y z} \omega_{z}, H = I_{z z} \omega_{z}$ · Suppose that the products of inertia Ixz = Iyz = 0, i.e, xy plane is a plane of symmetry of the body $\Rightarrow \underline{H} = I_{33} \omega_{2} \underline{R}$ $\frac{d}{dt} \frac{H}{dt} = \frac{I_{33}}{33} \frac{\alpha_{g} k}{2}$ for body fixed axes

 \Rightarrow Equations for planar motion: $E = m \frac{\ddot{r}}{r}$

 $\frac{M}{-p} = (I_{zz})_{p} \alpha_{z} k + \frac{p}{c} \times m \ddot{r} \neq$

special case : P=C or P=O (a fixed point) $\Rightarrow \quad \underline{M}_{p} = \left(\underline{I}_{zz}\right)_{p} \alpha_{z} \frac{k}{z}$ **Reading assignment:** Examples 7.5 to 7.10.

a) Find angle O at which end A leaves the walk.

b) Find expressions for $\underline{\alpha}$ and $\underline{\omega}$ after end A has left the wall (subsequent motion)

ends A and B remain Case a: $T_{q} = \frac{l}{2} \sin \theta \, \underline{i} + \frac{l}{2} \cos \theta \, \underline{j}$ $\underline{T}_{g} = O_{\frac{1}{2}}(\cos O_{\frac{1}{2}} - \sin O_{\frac{1}{2}})$

 $\frac{\ddot{r}}{G} = (\ddot{o} \frac{l}{2} \cos \theta - \dot{o}^2 \frac{l}{2} \sin \theta) \frac{l}{2}$ $-(\ddot{\theta}_{\frac{1}{2}}^{l}s\dot{\theta}_{0}+\dot{\theta}_{\frac{1}{2}}^{2}cos\theta)_{\frac{1}{2}}$ Translation: $\left[S_{2}+Q_{4}-Mg_{2}=m_{G}\ddot{r}_{G}\right](1)$ Taking dot product with 1 >> $Q = -M(\frac{l}{2}\sin\theta\ddot{\theta} + \frac{l}{2}\cos\theta\dot{\theta}^2)$ (2) • Rod leaves wall \Rightarrow when Q = 0 or Sind $\ddot{o} + \cos 0$ $\dot{o}^2 = 0$ (3)

Taking dot product with $\underline{r} \Rightarrow$ $S - Mg = M\left(\frac{l}{2}\cos\theta \,\ddot{\theta} - \frac{l}{2}\sin\theta \,\dot{\theta}^2\right)$ (4) Rotational Motion: $\Sigma M_{g} = I_{zz} \propto k$ $Q \frac{l}{2} \sin \theta - S \frac{l}{2} \cos \theta = \frac{l}{12} M l^2 \ddot{\theta}$ (5) Eliminate Q and S from equations (2),(4) and (5) ≥

(5) ≯

 $-\eta(\frac{l}{2}\sin\theta\ddot{\theta}+\frac{l}{2}\cos\theta\dot{\theta}^{2})\frac{l}{2}\sin\theta$ $-\frac{1}{2}\cos \Theta \left[M_{g} + M\left(\frac{1}{2}\cos \Theta \ddot{\Theta} - \frac{1}{2}\sin \Theta \dot{\Theta}^{2}\right)\right]$ $= \frac{1}{12} M l^2 \ddot{o}$ $-\left(\frac{l}{2}\operatorname{Sm}\theta\right)^{2}\ddot{\theta} - \left(\frac{l}{2}\right)^{2}\operatorname{Sin}\theta\cos\theta\,\dot{\theta}^{2}$ $-g\frac{l}{2}\cos\theta - \left(\frac{l}{2}\right)^{2}\cos^{2}\theta \ \ddot{\theta} + \left(\frac{l}{2}\right)^{2}\sin\theta\cos\theta \ \dot{\theta}^{2}$ $= \frac{1}{12} l^2 \ddot{0}$

27

 $-\frac{l^{2}}{4}\ddot{\theta} - \frac{1}{12}l^{2}\ddot{\theta} = g\frac{l}{2}\cos\theta$ $\ddot{\Theta} = -\frac{3g}{2l}\cos\Theta \qquad (6)$ ⇒ we want to integrate this equation to find how of depends on O,

or

(why?) Since we want to find angle O at which the bar leaves the wall at A, given ky (3).

• $\ddot{O} = O \frac{d(\dot{O})}{dO}$ (change of independent variable)

 $\begin{array}{c} (c) \Rightarrow 1 d \dot{o}^2 = -\frac{3g}{2l} \cos \theta \\ \frac{1}{2} d \theta \dot{o}^2 = -\frac{3g}{2l} \cos \theta \end{array}$ Integrating $\Rightarrow \dot{o}^2 = -\frac{39}{\rho}\sin\theta + \underline{C}$ at $0=\pi/2$, $\dot{0}=0 \Rightarrow C=3g/l$ $\Rightarrow \dot{\theta}^2 = \frac{3g}{l} (1 - \sin \theta)$ (t)

· condition for bar leaving the wall

$$(Q = 0):$$

sind \ddot{O} + G = 0 (3)

(6),(7) in (3) ⇒

 $-\frac{3g}{2t}\sin\theta\cos\theta + \frac{3g}{t}\cos\theta - \frac{3g}{t}\sin\theta\cos\theta = 0$ $or -\frac{3}{2}\sin\theta = (1) \Rightarrow \left[\partial_{0} = \sin^{-1}(\frac{2}{3}) \right]$ Then $(7) \Rightarrow \overline{\vartheta_0} = -\sqrt{\frac{9}{2}}$ (8) 30

B After leaving the walk , Mg $\frac{\Gamma_{G}}{\Gamma_{G}} = \frac{l}{2} \sin \theta \, \frac{l}{2} + \frac{3}{2} \frac{\delta}{2}$ (Note: the number of degrees of freedom has increased by one) > we use Q and y as the independ. coordinates.

 $\frac{\Upsilon}{G} = \frac{1}{2} \frac{1}{2} + \frac{1}{2} \cos \theta \dot{\theta} \frac{1}{2}$ $\dot{T}_{G} = \ddot{\eta} + \frac{1}{2} \left\{ \cos \theta \, \dot{\theta} - \sin \theta \, \dot{\theta}^{2} \right\}^{2}$ (9)

Translation :

32

 $S-Mg = \frac{Ml}{2} \left\{ \cos 0 \ddot{0} - \sin 0 \dot{0}^{2} \right\}$ (12)

Rotational:

$\sum M_{q} = -\frac{l}{2}\cos \Theta S R = \frac{l}{12} M l^{2} \Theta R$ \Rightarrow S = - MLÖ/6 coso (13).

(12),(13) ⇒ $-\frac{1}{6}Ml\ddot{\theta} - Mg\cos\theta = \frac{Ml}{2} \left\{ \cos^2\theta \ddot{\theta} - \frac{5m\theta\cos\theta}{x \dot{\theta}^2} \right\}$

$$\frac{69}{l} = \frac{69}{l} \cos \theta = (1 + 3\cos^2 \theta) \dot{\theta} - 3\sin \theta \cos \theta \dot{\theta}^2 (4)$$

$$figain: \ddot{0} = \frac{1}{2} \frac{d}{d0} \dot{0}^2$$

$$(14) \Rightarrow -\frac{68}{l}\cos\theta = \frac{(1+3\cos^2\theta)}{2}\frac{d}{d\theta}(\dot{\theta}^2)$$

$$\frac{d}{d\theta}\left(\left(\frac{1+3\cos^2\theta}{2}\right)\dot{\theta}^2\right)$$

Integrating $\Rightarrow (1+3\cos^2\theta)\dot{\theta}^2 = -\frac{129}{9}\sin\theta + C$ (15)

J4

Initial conditions: $\theta = \theta_0 = \sin^{-1}(2/3)$, $\theta_0 = -\sqrt{3/2}$ $\Rightarrow C = \frac{32}{3} \frac{q}{\ell}$ $\frac{\partial^2}{\partial^2}(1+3\cos^2\theta) + \frac{129}{2}\sin\theta = \frac{329}{32}\frac{9}{2}(16)$ This relates à to 0 at any position.