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CHAPTER 7

Basic Concepts and Kinematics of Rigid Body 

Motion

7.1  Degrees-of-freedom:

(of a rigid body)

Consider three

unconstrained particles 
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The positions are defined by             

i = 1, 2, 3.

 degrees of freedom = n = 9 = 3N

Now, constrain the particles 

(three particles placed

at the corners of a 

triangle whose sides

are formed by rigid

massless rods)
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Now:  there are three constraints

 n = 3(N) - 3 = 6   degrees of freedom.

Now: as another particle is introduced, its 

position is specified by 3 additional 

coordinates, but also have 3 additional 

constraints.

 four rigidly connected particles also 

have only 6 degrees of freedom.
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In general: a rigid body (any collection of 

particles whose relative positions are fixed)

has 6 degrees of freedom.

• translational motion of a point on the 

body - specified by 3 translational 

degrees of freedom.

• rotational motion about the specified 

point - 3 rotational degrees of freedom.
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Laws of motion for a system of particles

(extended to a rigid body)

a)

 translational motion of the C.M. (3 

degrees of freedom)

b) about C.M. or an inertially

fixed point

 rotational motion about the C.M. 

(3 rotational degrees of freedom)

cF mr

d
M H

dt

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7.2  Moments of Inertia

Recall: the notation

and definitions

The equation for

moment about an

arbitrary point P is:
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Now, the angular momentum about the point P

is

where       - velocity of        as viewed by a   

non-rotating observer translating with P.  

(relative velocity in an inertial frame)

For a rigid body - suppose that P is fixed in the

body  = constant, and    

where       - angular velocity of the body. 
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Thus, the angular momentum about P is 

By analogy:  

for a rigid body

rotating with

angular velocity

 
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We now consider the various cases:

Reference point P is at origin:
Z
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Y

O=P
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
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Let us define:     

These are the moments of inertia
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Similarly, we define products of Inertia:

(angular momentum vector for the body, or 

angular momentum about P)


V

yxxy dVxyII 


V

zxxz dVxzII 


V

zyyz dVyzII 

kHjHiHH zyxp 
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Here, 

In compact notation:

where

and symbols 1, 2, 3  x, y, z.

3 3

P iij j

i 1 j 1

H I e
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 
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The components of the angular momentum 

are

Note that       is the second moment of the mass 

distribution with respect to a Cartesian axis.

Radius of gyration

(effective location of

a mass point)
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Three moments of inertia and three products

of inertia specify the inertia properties of a

rigid body with regards to rotational motion.

• Note that P is fixed in the rigid body and
is the angular velocity of the rigid body.

• No assumption is made concerning the 

rotational motion of the xyz system. The

angular velocity in terms of the xyz system,

is valid at the instant considered.



kji zyx  



15

• as well as are, in general, 

functions of time depending on the 

orientation of xyz relative to the rigid body.

• To avoid the difficulties associated with 

treating      as functions of time, often one 

chooses xyz system that is fixed to the rigid 

body and rotates with it.

• Called a body-fixed coordinate system

ijIzyx  ,,

ijI
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7.3  MATRIX NOTATION:

Consider 

If              are known, the three scalar 

components                    can be used to represent

• We write                       as a column vector.

• A force      can be represented as

,   a row vector.

x y zH H i H j H k  
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or                       as a column vector.

A square matrix is a n  n array of elements: 

e.g. the elements of inertia       can be written 

as a square matrix

This is called an inertia matrix for the body.
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The angular velocity vector can be represented 

as

a column vector.

• the transpose of a column 

vector gives a row vector, etc.

• consider               the product of a row vector 

with a column vector

  ,

x
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z
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In scalar components, it is easy to see that 

can be expressed as 

Clearly, multiplication of

transforms        into the vector         usually 

with a different magnitude as well as 

direction.

In general, The angular velocity and the 

angular momentum vectors for a rigid 

body are in different directions

ijij eIH 

   Iwith
   ,H

    IH 
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Assignment: Complete the review of matrix 

operations in 7.3.

7.4  Kinetic Energy

For a system of n particles, the kinetic energy 

is

where

• - speed of the center of mass

• - velocity of the     particle as viewed 

from the C.M.

2

1

1 1
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n

c i i i

i
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For a set of particles rigidly connected and the 

assemblage rotating with angular velocity ,

Now, for a continuous mass distribution



1 1

( ) ( ) ( )

1 1

2 2

(using permutation in scalar triple product)

i i

i i i i i i

n n

rot i i i i i i

i i

T m m

  

        

    
 

 

    

    
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If P is a fixed point:

In vector matrix notation

1 1

2 2

1

2

rot

V V

rot C

CH

T dV dV

or T H

      



   



 

1

2
rot PT H

     
1 1

2 2

T

rot P PT H H    

O=P

dm





V
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Since

If one uses xyz coordinate system located at 

the center of mass of the rigid body,

In summation, notation

         
1

,
2

T

P rotH I T I   

     2 2 21
[

2

2 2 2 ]/ 2

T

rot xx x yy y zz z

xy x y xz x z yz y z

T I I I I

I I I

    

     

   

  

3 3

1 1

1

2
rot ij i j

i j

T I 
 

 
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Ex:  If      has the direction of one of the 

coordinate axes at an instant, 

Here, I - moment of inertia about the axis 

of rotation,

 - instantaneous angular velocity of the 

rigid body.



21

2
rotT I



25

7-6  Translation of Coordinate Axes

: center of mass: the coordinates of the 

center of mass in Oxyz system are

O
),,( ccc zyx

X

Z

Y

X’

Y’

Z’

O

C=O’

O’x’y’z’- coordinate

system located at the

centroid of the body;

Oxyz-any other coord

system;

O’=C-the centroid
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Let                        - moments of inertia about 

xyz axes system

=  moments of inertia about

centroidal axes

m - mass of the body

Easy to show (read 7.6) that

for moments of inertia

zzyyxx III  ,,

zzyyxx III ,,
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For products of inertia

• Note that the moments of inertia about the 

centroidal axes are the smallest.

• The products of inertia may increase or 

decrease compared to those about centroidal 

axes depending on the particular case.

ccyxxy ymxII  

cczxxz zmxII  

cczyyz zmyII  
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7.7  Rotation of Coordinate Axes

Consider two different coordinate systems. We 

assume that the origins for the two systems 

coincide.

consider a vector:

These are two ways of expressing the same

vector .r

kzjyixr 

kzjyix x
y

z

x’

y’

z’

P
r

O
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The two systems are characterized by unit

vectors and

Let

• are the cosines of the angles 

made by the x axis with the

directions, respectively.

Note that,   

kljlili xzxyxx
 

zyx  and,
xzxyxx lll  ,,

2 2 2

' '

1

1

x x y x z x

y y z zx x

i l i l j l k

l l l

  



     

   

kji  ,,kji ,,
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Consider the example:

direction

angles of 

x-axis

z’(k’)

x’(i’) y’(j’)

x(i)

O

x’x
y’x

z’x

'

'

'

x x

y x

z x














' '

'

' '

'

, cos , cos ,

cos

x x y x

z x

x x y x

z x

Also l l

l

 



 


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Similarily, we can write

x y y y z y

x z y z z z

j l i l j l k

k l i l j l k

  

  

    

    

Thus, the vector                           can be written

as

kzjyixr 

( )

( )

( )

x x y x z x

x y y y z y

x z y z z z

r x l i l j l k

y l i l j l k

z l i l j l k

x i y j z k

  

  

  

    

    

    

       
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In vector-matrix notation

In more compact notation

where                      are representations of

in the two coordinate systems.

It provides relation between components of 

the same vector in two coordinate systems.

    rlr 

   rr and

rr and

' ' '

' ' '

' ' '

'

'

'

x x x y x z

y x y y y z

z x z y z z

x l l l x

y l l l y

z l l l z

    
    

    
        
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Ex:  As another example, consider the Kinetic 

energy of a rigid body

O =C, the center of mass 

of the body.  There are 

two coordinate axes, xyz, 

x’y’z’

Here                          are two representations of 

the same angular velocity vector.

kji zyx  

kji zyx
  

    and

x
y

z

x’

y’

z’



O
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Then, the kinetic energy expressions in the two 

coordinate systems are

In component form, this transformation of 

inertia matrices is

         

          

            

      

1 1

2 2

,

1 1

2 2

T T

rot

TT T

TT T

rot

T

T I I

Also l or l

T I l I l

and I l I l

   

   

   

   

  

  



3 3

' ' ' '

' 1 ' 1

1
'

2
ij m i n j m n

m n

I l l I
 

 
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Some properties of the matrix [l].

It is an orthogonal matrix, i.e.,

(the identity matrix)

Since                              ,    (true for any matrix)

the matrix operation with [l] 

only rotates a given vector.

     

   
1

1
T

T

l l

or l l






   det det( )
T

l l

  2(det ) 1l  
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The relation                       can be explicitly 

written as

These are nine relations in the nine

components of the matrix [l].  Six of the these

equations are linearly independent. 

 There are 9 - 6 = 3 rotational degrees of 

freedom for a set of orthogonal coordinate axes 

(or for a rigid body).

     1
T

l l

3

' '

' 1

1

0
m i m j

m

if i j
l l

if i j


 



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Ex: Rotation of axes

Consider a vector r

that is represented 

in xyz and x’y’z’ 

axes. The two 

systems are rotated 

by 30° with respect 

to each other.

Then,
x,x’

z

y

y’

z’

x

y

z

r

30

30
O

30°

    '

r x i y j z k

r l r

       


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    '

cos 0 1,

cos cos90 0

cos cos90 0

x x x y x z

x x

x y x y

x z x z

y x y y y z

r l r

Now

x l x l y l z

l

l

l

y l x l y l z





  



 

 

  



   

 

  

  

   

x,x’

z

y

y’

z’

30

30O

30°
x’y

x’z
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cos cos90 0,

cos cos30 3 / 2

cos cos 60 1/ 2

0, cos120 1/ 2

cos30 3 / 2

1 0 0

0 3 / 2 1/ 2

0 1/ 2 3 / 2

y x y x

y y y y

y z y z

z x z y z z

z x z y

z z

l

l

l

z l x l y l z

l l

l

x x

y y

z z







 

 

 

  

 



  

  

  

   

   

 

    
    

     
         
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7.8  Principal Axes consider the inertia 

properties of a rigid body

Then, it is easy to see that 

x y

z

x’

y’

z’


O

dm

2 2

xx

V

2 2

yy

V

2 2

zz

V

I (y z )dV

I (x z )dV

I (x )dVy







 

 

 







2

xx yy zz

V

2
2 2 2 2 2 2 2

I +I +I 2 ( )dV

where =x z x

r

r y y z







       


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i.e.,  the sum of moments of inertia is invariant 

to coordinate system rotation.

More generally, tr[I]sum of diagonal terms is 

unchanged due to coordinate rotation (an 

orthogonal transform).

Consider products of inertia:

As an example:

A 180  rotation about the x-axis 


V

xyI dVxy

xx yy zz x x y y z zI +I +I I +I +I      



42

• In general, the products of inertia have 

no preferred sign; the sign depends on 

the orientation of the body with respect 

to the coordinate system.

x,x’

z

y
y’

z’

180 O

180°

x y xy

x z xz

y z yz

I =-I

I =-I

I I

 

 

 




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For a body with random orientation, positive 

and negative values of products of

inertia are equally likely to occur.

• The moments and products of inertia are a   

smooth function of the orientation of the 

coordinate system orientation since

relates the inertia properties in two systems

 It is possible to find a coordinate system in 

which the products of inertia vanish 

simultaneously

     
T

I l I l 
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 Such a coordinate system is called the 

principal axes of the rigid body.

• Consider the relation (alternate way to think)

Q: Is it possible to find a coordinate system in 

which the angular momentum vector is 

instantaneously parallel to the angular 

velocity vector?

i.e., can we write                         for some 

system?
   IH 

   IH 
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If one can do that, then

or

(This is really the eigenvalue problem for the 

inertia matrix [I] ).

If                                  ,  then det ([I] - I [1]) = 0

        1III 

  0,i.e.,0  

( )

( ) 0

( )

xx xy xz x

xy yy yz y

zx zy zz z

I I I I

I I I I

I I I I







   
  

   
     
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Or

(this is a characteristic equation, a cubic in I 

with coefficients      :

Let                   be the roots of the cubic and

be the eigenvectors 

associated with the eigenvalues:  

ijI

.032

2

1

3  aIaIaIao

321 ,, III

     
1 2 3
, ,  

( )

( ) 0

( )

xx xy xz

xy yy yz

zx zy zz

I I I I

I I I I

I I I I



 


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They satisfy

,         i = 1, 2, 3.

Clearly, the eigenvectors are known only 

up to an arbitrary constant, i.e., only the 

ratio of the components are fixed; in

particular, if we assume        to be arbitrary 

and non-zero, the ratios satisfy 

   [ ]
i i

iI I 

x

( ) /

( ) /

yy i yz y x xy

zy zz i z x zx

I I I I

I I I I

 

 

      
    

     
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If one chooses the constraint

then the values of                           are direction 

cosines of           they determine the direction of 

the corresponding principal axis at the reference

point P.

It is easy to show that if two principal moments 

of inertia are distinct, the corresponding 

eigenvectors are orthogonal, i.e.,  

,1222  zyx 

zyx  and,



   
1 2

1 20 if .
T

I I   
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THE ELLPSOID OF INERTIA

Read from the text.

Ex. 7.4  (text)

Consider a given body with a coordinate system 

located at its centroid.

In this coordinate  

system, the inertia 

properties of the body 

are given by a matrix 

[I].

x
y

z



C

dm
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We want to find the principal moments of

inertia and the associated directions; also, the 

coordinate transformation [l], specified by the 

rotation matrix, which diagonalizes the inertia 

matrix.

Essentially, we are considering the eigenvalue 

problem       .for III  

  2

150 0 100

0 250 0

100 0 300

I kg m

 
 

 
 
  
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The characteristic equation for the matrix [I] 

is



The roots, the principal moments of inertia, are

We now need to find the eigenvectors, which 

give directions of the principal axes.  

0)105.3I450I()I250( 42 

2

3

2

2

2

1 m350kgI,m250kgI,m100kgI 

150 0 100

0 250 0 0

100 0 300

I

I

I

  
 

 
 
   
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The eigenvalue problem is

or                                                             (1)

(2)

(3)

a) Consider the 1st eig.val.:                                     

(2) 

(1) 

Thus 

    0]1[II  

(150 ) 100 0i x zI    

(250 I ) 0i y 

100 (300 ) 0x i zI    

:100I 2

1 mkg

0y

.2/1/or10050  xzzx 

   
1

1 , 0 , 1/ 2 .
T

x 
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a) Consider the 2nd eig.val.:                                     

(2) 

(1) 

(3) 

The only possible solution to these equations is

c) Consider the 3rd eig.val.:                                     

(2)  Then (1), (3) 

Thus, 

2

2I 250 :kg m 

is arbitraryy

100 100 0x z   

   
2

0 0 , 1 , 0 .
T

x z y      

100 50 0x z   

2

3I 350 :kg m 

0y / 2.z x   

   
3

1, 0 , 2 .
T

x  
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Note:  The three eigenvectors are, as 

expected,  orthogonal to each other.

Note that

are in xz plane

Clearly, x’y’z’ is the principal coordinate system

    0, .
iT j

i j   

   
1 3
, 

x

z

C
x’

z’

3

1

{}3

{}1

{}2

y, y’
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The direction cosines for the              system are:

These allow us to construct the rotation matrix 

zyx 

1

1

cos cos 2 / 5

cos cos90 0

cos sin 1/ 5

, cos cos90 0,

cos cos0 1, cos cos90 0

1/ 5, 0, 2 / 5

x x x x

x y x y

x z x z

y x y x

y y y y y z y z

z x z y z z

l

l

l

Similarly l

l l

and l l l

 



 



 

 

 

 

 

   

  

  

  

  

  

     

   
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Thus,

• It is easy to check that

 

2 / 5 0 1/ 5

0 1 0

1/ 5 0 2 / 5

l

 
 

  
 
 

  2

100 0 0

[ ] [ ][ ] 0 250 0

0 0 350

TI l I l kg m

 
    
 
  
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7.9  Displacements of a Rigid Body

Euler’s Theorem: The most general 

displacement of a rigid body with one point 

fixed is equivalent to a single rotation about 

some axis through that fixed point

Chasles’ Theorem:  The most general 

displacement of a rigid body is equivalent to 

a screw displacement, i.e., translational 

motion of a reference point followed by 

rotation about an axis through the ref. point 

Assignment: Read the Section 7.9
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7.10  Axis and Angle of Rotation

• We know that the components of a vector in 

two different coordinate systems are 

obtained by the application of a rotation 

matrix [l] whose elements are the direction 

cosines.

x
y

z

x’

y’

z’

P
r

O
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Then, the vector r can be written as 

A natural question: Is there a vector whose 

coordinates remain unchanged as the 

coordinate system xyz is rotated to the

coordinate system ?zyx 

' ' '

' ' '

' ' '

'

'

'

x x x y x z

y x y y y z

z x z y z z

r xi y j zk x i y j z k

x l l l x

y l l l y

z l l l z

          

    
    

     
        
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If such a vector      exists, r

where                                      are the basis 

vectors that define the two coordinate systems, 

then, given the rotation matrix [l], the 

relation                          gives 

r xi y j zk xi y j zk       

, , , ,i j k and i j k  

    'r l r

' ' '

' ' '

' ' '

x x x y x z

y x y y y z

z x z y z z

x l l l x

y l l l y

z l l l z

    
    

    
        
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This is an eigenvalue question for matrix [l].

• Thus, the existence of such a vector        (or r ) 

is associated with matrix [l] having an 

eigenvalue of 1.  The corresponding 

eigenvector will then define the direction 

which remains unchanged due to rotation, 

and hence, represents the axis of rotation.

 r

    1 0 must be satisfied.or r l r 
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7.10 Axis and Angle of Rotation

7.11 Reduction of Forces - equivalent forces

and couples

Reading Assignments
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7.12  Infinitesimal Rotations

• Consider a sequence of rotations: the new 

and old representations of the vector r are 

related by

x
y

z

x’

y’

z’

P (x,y,z)

or (x’,y’,z’)
r

O

       'r l r r  
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Ex: Consider a counterclockwise rotation 

about the x axis.

Then, 

x,x’

z

y

y’

z’

O1

1

1

P

r

    

 

1

1 1 1

1 1

'

,

1 0 0

0 cos sin

0 sin cos

r r

where

the rotation matrix is

 

 

 

 
 

 
 
  
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Suppose we perform two rotations in a

sequence:

      

          

      

    

1

2 2 1

2 1

combining

where (combined rotation

matrix)

r r r

r r r r

r r r

  

       

   

   
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Since matrix multiplication does commute,

Thus, the order in which rotations are 

accomplished is crucial to know for finite 

rotations.

We now show that infinitesimal rotations 

commute!!

       2 1 1 2      
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Ex: Consider a sequence of two rotations 

given below:

1. xyzx’y’z’. 2. x’y’z’ x”y”z”

Let us call it Let us call it   1  2

x’

z

y

y’

z’

z

z
x

z

z”
z’

x’

y”
y’

y

y

y

x”
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   

 

1

1

2

2

cos sin 0 1 0

sin cos 0 1 0

0 0 1 0 0 1

[1] [ ]

cos 0 sin 1 0

0 1 0 0 1 0

sin 0 cos 0 1

[1] [ ]

z z z

z z z z

y z y

y

z z y

  

   



  



  



   
   

     
   
      

 

   
          
     

 
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Order not important and rotations can be added 

vectorially. Infinitesimal rotations  angular 

velocities add as vectors

  

  

2 1 2 1

1 2 2 1

1 2

1 2 1 2

1 2 1 2

1 2

Thus, the two sequences give:

([1] [ ])([1] [ ])

[1] [ ] [ ] [ ][ ]

[1] [ ] [ ]

([1] [ ])([1] [ ])

[1] [ ] [ ] [ ][ ]

[1] [ ] [ ]

 

   

 

 

   

 

    

   

  

    

   

  
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Ex: Consider now a sequence of three 

infinitesimal rotations:

1. x - about x axis

2. y - about y’ axis

3. z - about z” axis

      xr r r 

        y y xr r r r            

           

       ˆ ˆ ˆ[1]

z z y x

z y x

r r r r

r r

   

  

        

         
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 

 

Here,

0 0 0 0 0

ˆ ˆ0 0 , 0 0 0

0 0 0 0

0 0

ˆ 0 0

0 0 0

y

x x y

x y

z

z z



  

 



 

  
         
     

 
 

 
 
  
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   

           

ˆ ˆ ˆ ˆ[ ]

0

ˆ, [ ] 0

0

ˆ ˆ ˆ ˆ[1] [1]

x y z

z y

z x

z x

z y x

Let

Then

and the complete relation is

r r r

   

 

  

 

   

    

 
 

 
 
  

             
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Now, apply an infinitesimal rotation to a

vector      of constant length.

e.g.: consider a 

rotation about z axis.

Then, 

     

      

[1]r r

or r r r





    

  

y

xO

zr
r

r’

r
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Note: in the above, we considered rotation of 

coordinate axes with vector fixed in space

 any changes in components of     are entirely

due to coordinate axes rotations.

Now: Consider coordinate system fixed and let     

the vector      rotate in opposite direction.

Suppose that this rotation takes place in time 

t.  Then, 

r

r

 
   

0
lim

t

r r
r

t 

 



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or

Here                                       the angular 

velocity matrix

The negative sign is introduced so that [] 

refers to rotation of      and not to that of 

the coordinate system.

Recall: for a vector of constant length,  

r

 
 

     
0

0

[ ]
[ ] [ ]

[ ]
[ ]

lim

lim

t

t

r
r r or r r

t

t


 




 

 


  








r r 
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Thus:    

and

are statements of the same fact in different 

forms.

Note:         is a skew symmetric matrix

consider the matrix:

r r 

   [ ]r r

[ ]

0

[ ] 0

0

z y

z x

y x

 

  

 

 
 

  
  
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Then:

Also:

   

( )

[ ] ( )

( )

z y

z x

y x

y z x

r r x z y

x y z

 

  

 

    
   

      
       

( ) ( )

( )

x y z

z y z x

y x

i j k

r r

x y z

y z i x z j

x y k

   

   

 

  

    

  


