CHAPTER 7

Basic Concepts and Kinematics of Rigid Body Motion

7.1 Degrees-of-freedom:
(of a rigid body)
Consider three
unconstrained particles

The positions are defined by

$$
\underline{r}_{i}=x_{i} \underline{i}+y_{i} \underline{j}+z_{i} \underline{k} \quad i=1,2,3 .
$$

\Rightarrow degrees of freedom $=\mathbf{n}=9=3 \mathrm{~N}$
Now, constrain the particles \Rightarrow (three particles placed at the corners of a triangle whose sides are formed by rigid massless rods)

Now: there are three constraints

$$
\left|\underline{r}_{1}-\underline{r}_{2}\right|=l_{1} ; \quad\left|\underline{r}_{3}-\underline{r}_{2}\right|=l_{2} ; \quad\left|\underline{r}_{1}-\underline{r}_{3}\right|=l_{3}
$$

$$
\text { or }\left(x_{2}-x_{1}\right)^{2}+\left(y_{2}-y_{1}\right)^{2}+\left(z_{2}-z_{1}\right)^{2}-l_{1}^{2}=0, \quad \text { etc. }
$$

$\Rightarrow \mathrm{n}=3(\mathrm{~N})-3=6 \Leftarrow$ degrees of freedom.
Now: as another particle is introduced, its position is specified by 3 additional coordinates, but also have 3 additional constraints.
\Rightarrow four rigidly connected particles also have only 6 degrees of freedom.

In general: a rigid body (any collection of particles whose relative positions are fixed) has 6 degrees of freedom.

- translational motion of a point on the body - specified by 3 translational degrees of freedom.
- rotational motion about the specified point - $\mathbf{3}$ rotational degrees of freedom.

Laws of motion for a system of particles

 (extended to a rigid body)a) $\sum \underline{\mathrm{F}}=\mathrm{m} \ddot{\underline{\underline{T}}}_{\text {c }}$
\Rightarrow translational motion of the C.M. (3 degrees of freedom)
b) $\sum \underline{M}=\frac{d}{d t} \underline{H}$ about C.M. or an inertially fixed point
\Rightarrow rotational motion about the C.M. (3 rotational degrees of freedom)
7.2 Moments of Inertia

Recall: the notation and definitions

The equation for moment about an
 arbitrary point P is:

$$
\underline{\mathrm{M}}_{\mathrm{p}}=\frac{\mathrm{d}}{\mathrm{dt}} \underline{\mathrm{H}}_{\mathrm{p}}+\underline{\rho}_{\mathrm{c}} \times \mathrm{m} \ddot{\underline{i}}_{\mathrm{p}}
$$

Now, the angular momentum about the point P is

$$
\underline{\mathrm{H}}_{\mathrm{p}}=\sum_{\mathrm{i}=1}^{\mathrm{N}} \underline{\rho}_{\mathrm{i}} \times \mathrm{m}_{\mathrm{i}} \underline{\underline{\dot{\rho}}}_{\mathrm{i}}
$$

where $\underline{\underline{\rho}}_{\mathrm{i}}$ - velocity of m_{i} as viewed by a non-rotating observer translating with \mathbf{P}. (relative velocity in an inertial frame)

For a rigid body - suppose that P is fixed in the body $\Rightarrow\left|\underline{\rho}_{\mathrm{i}}\right|=$ constant, and $\underline{\dot{\rho}}_{\mathrm{i}}=\underline{\omega} \times \underline{\rho}_{\mathrm{i}}$ where $\underline{\omega}$ - angular velocity of the body.

Thus, the angular momentum about P is \Rightarrow $\underline{\mathrm{H}}_{\mathrm{p}}=\sum_{\mathrm{t}=1}^{\mathrm{N}} \mathrm{m}_{\mathrm{i}} \underline{\rho}_{\mathrm{i}} \times\left(\underline{\omega} \times \underline{\rho}_{\mathrm{i}}\right)$ By analogy: for a rigid body rotating with angular velocity $(\underline{\omega})$

$\underline{\mathrm{H}}_{\rho}=\int_{\mathrm{V}} \rho(\underline{r}) \underline{\rho} \times(\underline{\omega} \times \underline{\rho}) \mathrm{dV} ; \mathrm{dm}=\rho(\underline{\mathrm{r}}) \mathrm{dV}$

We now consider the various cases: Reference point \mathbf{P} is at origin:
$\underline{\rho}=x \underline{i}+y \underline{j}+z \underline{k}$
$\underline{\omega}=\omega_{x} \underline{i}+\omega_{y} \underline{j}+\omega_{z} \underline{k}$
Then
$\underline{\rho} \times(\underline{\omega} \times \underline{\rho})=\left[\left(y^{2}+z^{2}\right) \omega_{x}\right.$
$\left.-x y \omega_{y}-x z \omega_{z}\right] \underline{i}+\left[-x y \omega_{x}\right.$
$\left.+\left(x^{2}+z^{2}\right) \omega_{y}-y z \omega_{z}\right] \underline{j}$
$+\left[-x z \omega_{x}-y z \omega_{y}+\left(x^{2}+y^{2}\right) \omega_{z}\right] \underline{k}$
$\mathbf{O}=\mathbf{P}$

$$
\begin{aligned}
& \text { Let us define: } \quad \mathrm{I}_{\mathrm{xx}}=\int_{\mathrm{V}} \rho\left(\mathrm{y}^{2}+\mathrm{z}^{2}\right) \mathrm{dV} \\
& \mathrm{I}_{\mathrm{yy}}=\int_{\mathrm{V}} \rho\left(\mathrm{x}^{2}+\mathrm{z}^{2}\right) \mathrm{dV} \quad ; \quad \mathrm{I}_{\mathrm{zz}}=\int_{\mathrm{V}} \rho\left(\mathrm{x}^{2}+\mathrm{z}^{2}\right) \mathrm{dV}
\end{aligned}
$$

These are the moments of inertia
I_{xx} - about x axis
$\mathrm{I}_{\mathrm{yy}}-$ about y axis through the reference point $\mathrm{O} \equiv \mathrm{P}$ $\mathrm{I}_{z z}$ - about z axis

Similarly, we define products of Inertia:

$$
\begin{aligned}
\mathrm{I}_{\mathrm{xy}} & =\mathrm{I}_{\mathrm{yx}}=-\int_{\mathrm{V}} \rho \mathrm{xy} \mathrm{dV} \\
\mathrm{I}_{\mathrm{xz}} & =\mathrm{I}_{\mathrm{zx}}=-\int_{\mathrm{V}} \rho \mathrm{xzdV} \\
\mathrm{I}_{\mathrm{yz}} & =\mathrm{I}_{\mathrm{zy}}=-\int_{\mathrm{V}} \rho \mathrm{yzdV} \\
\Rightarrow \underline{\mathrm{H}}_{\mathrm{p}} & =\mathrm{H}_{\mathrm{x}} \underline{\mathrm{i}}+\mathrm{H}_{\mathrm{y}} \underline{\mathrm{j}}+\mathrm{H}_{\mathrm{z}} \underline{\mathrm{k}}
\end{aligned}
$$

(angular momentum vector for the body, or angular momentum about P)

Here, $H_{x}=I_{x x} \omega_{x}+I_{x y} \omega_{y}+I_{x z} \omega_{z}$

$$
\begin{aligned}
& H_{y}=I_{y x} \omega_{x}+I_{y y} \omega_{y}+I_{y z} \omega_{z} \\
& H_{z}=I_{z x} \omega_{x}+I_{z y} \omega_{y}+I_{z z} \omega_{z}
\end{aligned}
$$

In compact notation:

$$
\underline{\mathrm{H}}_{\mathrm{P}}=\sum_{\mathrm{i}=1}^{3} \sum_{\mathrm{j}=1}^{3} \mathrm{I}_{\mathrm{ij}} \omega_{\mathrm{j}} \quad \underline{\mathrm{e}}_{\mathrm{i}}
$$

where $\underline{\mathrm{e}}_{1}=\underline{\mathrm{i}}, \underline{\mathrm{e}}_{2}=\underline{\mathrm{j}}, \underline{\mathrm{e}}_{3}=\underline{\mathrm{k}}$ and symbols $\mathbf{1 , 2 , 3 \equiv x , y , z}$.

The components of the angular momentum are

$$
H_{i}=\sum_{j=1}^{3} I_{i j} \omega_{j}, \quad i=1,2,3
$$

Note that $I_{i i}$ is the second moment of the mass distribution with respect to a Cartesian axis.
Radius of gyration
(effective location of
$k_{i} \equiv \sqrt{\frac{I_{i i}}{m}}, \quad i=1,2,3$ a mass point)

$$
\begin{aligned}
& \text { or } \\
& I_{i i}=m k_{i}^{2}
\end{aligned}
$$

Three moments of inertia and three products of inertia specify the inertia properties of a rigid body with regards to rotational motion.

- Note that P is fixed in the rigid body and $\underline{\omega}$ is the angular velocity of the rigid body.
- No assumption is made concerning the rotational motion of the xyz system. The angular velocity in terms of the xyz system,

$$
\underline{\omega}=\omega_{x} \underline{i}+\omega_{y} \underline{j}+\omega_{z} \underline{k}
$$

is valid at the instant considered.

- $\omega_{x}, \omega_{y}, \omega_{z}$ as well as $I_{i j}$ are, in general, functions of time depending on the orientation of xyz relative to the rigid body.
- To avoid the difficulties associated with treating $I_{i j}$ as functions of time, often one chooses xyz system that is fixed to the rigid body and rotates with it.
- Called a body-fixed coordinate system

7.3 MATRIX NOTATION:

Consider $\underline{H}=H_{x} \underline{i}+H_{y} \underline{j}+H_{z} \underline{k}$
If $\underline{i}, \underline{j}, \underline{k}$ are known, the three scalar
components H_{x}, H_{y}, H_{z} can be used to represent \underline{H}

- We write $\{H\}=\left\{\begin{array}{l}H_{x} \\ H_{y} \\ H_{z}\end{array}\right\}$ as a column vector.
- A force \underline{F} can be represented as

$$
\lfloor F\rfloor=\left\lfloor F_{x}, F_{y}, F_{z}\right\rfloor, \text { a row vector. }
$$

or $\{F\}=\left\{\begin{array}{c}F_{x} \\ F_{y} \\ F_{z}\end{array}\right\}$ as a column vector.
A square matrix is a $\mathbf{n} \times \mathbf{n}$ array of elements: e.g. the elements of inertia $I_{i j}$ can be written as a square matrix

$$
[I]=\left[\begin{array}{lll}
I_{x x} & I_{x y} & I_{x z} \\
I_{y x} & I_{y y} & I_{y z} \\
I_{z x} & I_{z y} & I_{z z}
\end{array}\right]
$$

This is called an inertia matrix for the body ${ }_{j}$

The angular velocity vector can be represented as

$$
\{\omega\}=\left\{\begin{array}{l}
\omega_{x} \\
\omega_{y} \\
\omega_{z}
\end{array}\right\}, \text { a column vector. }
$$

$\{\omega\}^{T} \equiv\left\lfloor\omega_{x} \omega_{y} \quad \omega_{z}\right\rfloor$, the transpose of a column vector gives a row vector, etc.

- consider $\lceil 0\rceil\{H\}$ 'the product of a row vector with a column vector

$$
\lfloor\omega\rfloor\{H\}=\omega_{x} H_{x}+\omega_{y} H_{y}+\omega_{z} H_{z} \equiv \underline{\omega} \cdot \underline{H}
$$

In scalar components, it is easy to see that $\underline{H}=\Sigma \Sigma I_{i j} \omega_{j} \underline{e}_{i}$ can be expressed as

$$
\{H\}=[I]\{\omega\}
$$

Clearly, multiplication of $\{\omega\}$ with $[I]$ transforms $\{\omega\}$ into the vector $\{H\}$, usually with a different magnitude as well as direction.
\Rightarrow In general, The angular velocity and the angular momentum vectors for a rigid body are in different directions

Assignment: Complete the review of matrix operations in 7.3.
7.4 Kinetic Energy

For a system of \mathbf{n} particles, the kinetic energy
is

$$
T=\frac{1}{2} m v_{c}^{2}+\frac{1}{2} \sum_{i=1}^{n} m_{i} \dot{\underline{\rho}}_{i} \cdot \underline{\underline{\rho}}_{i}
$$

where

- v_{C} - speed of the center of mass
- $\underline{\dot{\rho}}_{i}$ - velocity of the $t^{\text {th }}$ particle as viewed from the C.M.

For a set of particles rigidly connected and the

 assemblage rotating with angular velocity $\underline{\omega}$,$$
\underline{\dot{\rho}}_{i}=\underline{\omega} \times \underline{\rho}_{i}
$$

$$
\underline{\underline{\rho}}_{i} \square \underline{\dot{\rho}}_{i}=\left(\underline{\omega} \times \underline{\rho}_{i}\right)\left(\underline{\omega} \times \underline{\rho}_{i}\right)=\underline{\dot{\rho}}_{i}\left[\left(\underline{\omega} \times \underline{\rho}_{i}\right)\right.
$$

$$
\Rightarrow \quad T_{\text {rot }}=\frac{1}{2} \sum_{i=1}^{n} m_{i} \underline{\dot{\rho}}_{i} \square \underline{\dot{p}}_{i}=\frac{1}{2} \sum_{i=1}^{n} \underline{\omega} \square \underline{\rho}_{i} \times m_{i} \underline{\dot{\rho}}_{i}
$$

(using permutation in scalar triple product)
Now, for a continuous mass distribution

$$
\begin{aligned}
& T_{\text {rot }}=\frac{1}{2} \int_{V} \rho \underline{\omega} \square \underline{\rho} \times \underline{\dot{\rho}} d V=\frac{1}{2} \underline{\omega} \underbrace{\int_{V} \rho \underline{\rho} \times \underline{\dot{\rho}} d V}_{V} \\
& \text { or } T_{\text {rot }}=\frac{1}{2} \underline{\omega} \square \underline{H}_{C} \\
& \text { If } \mathbf{P} \text { is a fixed point: } \\
& T_{\text {rot }}=\frac{1}{2} \underline{\omega} \square \underline{H}_{P} \\
& \text { In vector matrix notation }
\end{aligned}
$$

$$
T_{\text {rot }}=\frac{1}{2}\lfloor\omega\rfloor\left\{H_{P}\right\}=\frac{1}{2}\{\omega\}^{T}\left\{H_{P}\right\}
$$

Since $\left\{H_{P}\right\}=[I]\{\omega\}, \quad T_{\text {rot }}=\frac{1}{2}\{\omega\}^{T}[I]\{\omega\}$
If one uses xyz coordinate system located at the center of mass of the rigid body,

$$
\begin{aligned}
T_{r o t}= & \frac{1}{2}\{\omega\}^{T}[I]\{\omega\}=\left[I_{x x} \omega_{x}^{2}+I_{y y} \omega_{y}^{2}+I_{z z} \omega_{z}^{2}\right. \\
& \left.+2 I_{x y} \omega_{x} \omega_{y}+2 I_{x z} \omega_{x} \omega_{z}+2 I_{y z} \omega_{y} \omega_{z}\right] / 2
\end{aligned}
$$

In summation, notation

$$
T_{r o t}=\frac{1}{2} \sum_{i=1}^{3} \sum_{j=1}^{3} I_{i j} \omega_{i} \omega_{j}
$$

Ex: If $\underline{\omega}$ has the direction of one of the coordinate axes at an instant,

$$
T_{\text {rot }}=\frac{1}{2} I \omega^{2}
$$

Here, I - moment of inertia about the axis of rotation,
$\underline{\omega}$ - instantaneous angular velocity of the rigid body.

7-6 Translation of Coordinate Axes

O'x'y'z'- coordinate system located at the centroid of the body;
Oxyz-any other coord system;
O'=C-the centroid
O^{\prime} : center of mass: the coordinates of the center of mass in $\mathbf{O x y z}$ system are $\left(x_{c}, y_{c}, z_{c}\right)$

Let $I_{x x}, I_{y y}, I_{z z}$ - moments of inertia about xyz axes system

$$
I_{x^{\prime} x^{\prime}}, I_{y^{\prime} y^{\prime}}, I_{z^{\prime} z^{\prime}}=\underset{\text { centroidal axes }}{\text { moments of inertia about }}
$$

m - mass of the body
Easy to show (read 7.6) that
for moments of inertia
$I_{x x}=I_{x^{\prime} x^{\prime}}+m\left(y_{c}^{2}+z_{c}^{2}\right)$
$\left.I_{y y}=I_{y^{\prime} y^{\prime}}+m\left(x_{c}^{2}+z_{c}^{2}\right)\right\}$ parallel axis theorem
$\left.I_{z z}=I_{z^{\prime} z^{\prime}}+m\left(x_{c}^{2}+y_{c}^{2}\right)\right)$

For products of inertia

$$
\begin{aligned}
& I_{x y}=I_{x^{\prime} y^{\prime}}-m x_{c} y_{c} \\
& I_{x z}=I_{x^{\prime} z^{\prime}}-m x_{c} z_{c} \\
& I_{y z}=I_{y^{\prime} z^{\prime}}-m y_{c} z_{c}
\end{aligned}
$$

- Note that the moments of inertia about the centroidal axes are the smallest.
- The products of inertia may increase or decrease compared to those about centroidal axes depending on the particular case.

7.7 Rotation of Coordinate Axes

Consider two different coordinate systems. We assume that the origins for the two systems coincide. $\left.z^{\prime}\right|^{z}$

consider a vector:

$$
\begin{aligned}
\underline{r} & =x \underline{i}+y \underline{j}+z \underline{k} \\
& =x^{\prime} \underline{i^{\prime}}+y^{\prime} \underline{j^{\prime}}+z^{\prime} \underline{k^{\prime}}
\end{aligned}
$$

These are two ways of expressing the same vector \underline{r}.

The two systems are characterized by unit vectors $\underline{i}, \underline{j}, \underline{k}$ and $\underline{i}^{\prime}, \underline{j^{\prime}}, \underline{k^{\prime}}$
Let $\underline{i}=l_{x^{\prime} x} \underline{i^{\prime}}+l_{y^{\prime} x} \underline{j^{\prime}}+l_{z^{\prime} x} \underline{k^{\prime}}$

- $l_{x^{\prime} x}, l_{y^{\prime} x}, l_{z^{\prime} x}$ are the cosines of the angles made by the x axis with the x^{\prime}, y^{\prime} and z^{\prime} directions, respectively.
Note that,

$$
\begin{aligned}
& |\underline{i}|=\left|l_{x^{\prime} x} i^{\prime}+l_{y^{\prime} x} \underline{j^{\prime}}+l_{z^{\prime} x} \underline{k^{\prime}}\right|=1 \\
& \Rightarrow \quad l_{x^{\prime} x}^{2}+l_{y^{\prime} y}^{2}+l_{z^{\prime} z}^{2}=1
\end{aligned}
$$

Consider the example:

Also, $\quad l_{x^{\prime} x}=\cos \theta_{x^{\prime} x}, \quad l_{y^{\prime} x}=\cos \theta_{y^{\prime} x}$,

$$
l_{z^{\prime} x}=\cos \theta_{z^{\prime} x}
$$

Similarily, we can write

$$
\begin{aligned}
& \underline{j}=l_{x^{\prime},} \underline{i^{\prime}}+l_{y^{\prime} y} \underline{j^{\prime}}+l_{z^{\prime},} \underline{k^{\prime}} \\
& \underline{k}=l_{x^{\prime} z} \underline{i^{\prime}}+l_{y^{\prime} z} \underline{j^{\prime}}+l_{z^{\prime} z} \underline{k^{\prime}}
\end{aligned}
$$

Thus, the vector $\underline{r}=x \underline{i}+y \underline{j}+z \underline{k}$ can be written as $\underline{r}=x\left(l_{x^{\prime} x} \underline{i^{\prime}}+l_{y^{\prime} x} \underline{j^{\prime}}+l_{z^{\prime} x} \underline{k^{\prime}}\right)$

$$
\begin{aligned}
& +y\left(l_{x^{\prime} y} \underline{i^{\prime}}+l_{y^{\prime} y} \underline{j^{\prime}}+l_{z^{\prime} y} \underline{k^{\prime}}\right) \\
& +z\left(l_{x^{\prime} z} \underline{i^{\prime}}+l_{y^{\prime} z} \underline{j^{\prime}}+l_{z^{\prime} z} \underline{k^{\prime}}\right) \\
& \equiv x^{\prime} \underline{i^{\prime}}+y^{\prime} \underline{j^{\prime}}+z^{\prime} \underline{k^{\prime}}
\end{aligned}
$$

In vector-matrix notation

$$
\left\{\begin{array}{c}
x^{\prime} \\
y^{\prime} \\
z^{\prime}
\end{array}\right\}=\left[\begin{array}{lll}
l_{x^{\prime} x} & l_{x^{\prime} y} & l_{x^{\prime} z} \\
l_{y^{\prime} x} & l_{y^{\prime} y} & l_{y^{\prime} z} \\
l_{z^{\prime} x} & l_{z^{\prime} y} & l_{z^{\prime} z}
\end{array}\right]\left\{\begin{array}{l}
x \\
y \\
z
\end{array}\right\}
$$

In more compact notation

$$
\left\{r^{\prime}\right\}=[l]\{r\}
$$

where $\{r\}$ and $\left\{r^{\prime}\right\}$ are representations of
\underline{r} and \underline{r}^{\prime} in the two coordinate systems.
It provides relation between components of
the same vector in two coordinate systems.

Ex: As another example, consider the Kinetic

 energy of a rigid body
$\mathrm{O}=\mathrm{C}$, the center of mass of the body. There are two coordinate axes, xyz, $\mathbf{x}^{\prime} \mathbf{y}^{\prime} \mathbf{z}$ '

$$
\begin{aligned}
& \underline{\omega}=\omega_{x} \underline{i}+\omega_{y} \underline{j}+\omega_{z} \underline{k} \\
& =\omega_{x^{\prime}} \underline{i^{\prime}}+\omega_{y^{\prime}} \underline{j^{\prime}}+\omega_{z^{\prime}} \underline{k^{\prime}}
\end{aligned}
$$

Here $\{\omega\}$ and $\left\{\omega^{\prime}\right\}$ are two represe
the same angular velocity vector.

Then, the kinetic energy expressions in the two coordinate systems are

$$
\begin{aligned}
& \quad T_{\text {rot }}=\frac{1}{2}\{\omega\}^{T}[I]\{\omega\}=\frac{1}{2}\left\{\omega^{\prime}\right\}^{T}\left[I^{\prime}\right]\left\{\omega^{\prime}\right\} \\
& \text { Also, }\left\{\omega^{\prime}\right\}=[l]\{\omega\} \text { or }\left\{\omega^{\prime}\right\}^{T}=\{\omega\}^{T}[l]^{T} \\
& \Rightarrow T_{\text {rot }}=\frac{1}{2}\{\omega\}^{T}[I]\{\omega\}=\frac{1}{2}\{\omega\}^{T}[l]^{T}\left[I^{\prime}\right][l]\{\omega\} \\
& \text { and } \quad[I]=[l]^{T}\left[I^{\prime}\right][l] \text {. }
\end{aligned}
$$

In component form, this transformation of
inertia matrices is $I_{i j}=\frac{1}{2} \sum_{m^{\prime}=1}^{3} \sum_{n^{\prime}=1}^{3} l_{m^{\prime} i} l_{n^{\prime} j} I^{\prime}{ }_{m^{\prime} n^{\prime}}$

Some properties of the matrix [$l]$. It is an orthogonal matrix, i.e.,

$$
\begin{aligned}
& {[1]=[l]^{T}[l] \quad \text { (the identity matrix) } } \\
\text { or } & {[l]^{T}=[l]^{-1} }
\end{aligned}
$$

Since $\operatorname{det}[l]=\operatorname{det}\left([l]^{T}\right), \quad$ (true for any matrix) $(\operatorname{det}[l])^{2}=1 \quad \Rightarrow$ the matrix operation with $[l]$ only rotates a given vector.

The relation $[1]=[l]^{T}[l]$ can be explicitly written as

$$
\sum_{m^{\prime}=1}^{3} l_{m^{\prime} i} l_{m^{\prime} j}= \begin{cases}1 & \text { if } i=j \\ 0 & \text { if } i \neq j\end{cases}
$$

These are nine relations in the nine components of the matrix [l]. Six of the these equations are linearly independent. \rightarrow There are 9-6=3 rotational degrees of freedom for a set of orthogonal coordinate axes (or for a rigid body).

Ex: Rotation of axes

Consider a vector \underline{r} that is represented in $x y z$ and $x^{\prime} y^{\prime} z '$ axes. The two systems are rotated by 30° with respect to each other. Then,

$$
\begin{aligned}
& \underline{r}=x^{\prime} \underline{i}^{\prime}+y^{\prime} \underline{j}^{\prime}+z^{\prime} \underline{k}^{\prime} \\
& \left\{r^{\prime}\right\}=[l]\{r\}
\end{aligned}
$$

$$
\begin{aligned}
& \left\{r^{\prime}\right\}=[l]\{r\} \\
& \text { Now } \\
& x^{\prime}=l_{x^{\prime} x} x+l_{x^{\prime} y} y+l_{x^{\prime} z} z \\
& l_{x^{\prime} x}=\cos 0=1, \\
& l_{x^{\prime} y}=\cos \theta_{x^{\prime} y}=\cos 90=0 \\
& l_{x^{\prime} z}=\cos \theta_{x^{\prime} z}=\cos 90=0 \\
& y^{\prime}=l_{y^{\prime} x} x+l_{y^{\prime} y} y+l_{y^{\prime} z} z
\end{aligned}
$$

$$
\begin{aligned}
& l_{y^{\prime} x}=\cos \theta_{y^{\prime} x}=\cos 90=0, \\
& l_{y^{\prime} y}=\cos \theta_{y^{\prime} y}=\cos 30=\sqrt{3} / 2 \\
& l_{y^{\prime} z}=\cos \theta_{y^{\prime} z}=\cos 60=1 / 2 \\
& z^{\prime}=l_{z^{\prime} x} x+l_{z^{\prime} y} y+l_{z^{\prime} z} z \\
& l_{z^{\prime} x}=0, \quad l_{z^{\prime} y}=\cos 120=-1 / 2 \\
& l_{z^{\prime} z}=\cos 30=\sqrt{3} / 2 \\
& \Rightarrow\left\{\begin{array}{l}
x^{\prime} \\
y^{\prime} \\
z^{\prime}
\end{array}\right]=\left[\begin{array}{ccc}
1 & 0 & 0 \\
0 & \sqrt{3} / 2 & 1 / 2 \\
0 & -1 / 2 & \sqrt{3} / 2
\end{array}\right]\left\{\begin{array}{l}
x \\
y \\
z
\end{array}\right\}
\end{aligned}
$$

7.8 Principal Axes consider the inertia

 properties of a rigid body

$$
\begin{aligned}
& \mathrm{I}_{\mathrm{xx}}=\int_{\mathrm{V}} \rho\left(\mathrm{y}^{2}+\mathrm{z}^{2}\right) \mathrm{dV} \\
& \mathrm{I}_{\mathrm{yy}}=\int_{\mathrm{V}} \rho\left(\mathrm{x}^{2}+\mathrm{z}^{2}\right) \mathrm{dV} \\
& \mathrm{I}_{\mathrm{zz}}=\int_{\mathrm{V}} \rho\left(\mathrm{x}^{2}+y^{2}\right) \mathrm{dV}
\end{aligned}
$$

Then, it is easy to see that

$$
\mathrm{I}_{\mathrm{xx}}+\mathrm{I}_{\mathrm{yy}}+\mathrm{I}_{\mathrm{zz}}=\int_{\mathrm{V}} 2 \rho\left(r^{2}\right) \mathrm{dV}
$$

where $r^{2}=\mathrm{x}^{2}+y^{2}+\mathrm{z}^{2}=\mathrm{x}^{\prime 2}+y^{\prime 2}+z^{\prime 2}=|\underline{\rho}|^{2}$

$$
\Rightarrow I_{x x}+I_{y y}+I_{z z}=I_{x^{\prime} x^{\prime}}+I_{y^{\prime} y^{\prime}}+I_{z^{\prime} z^{\prime}}
$$

i.e., the sum of moments of inertia is invariant to coordinate system rotation.
More generally, $\operatorname{tr}[\mathrm{I}] \equiv$ sum of diagonal terms is unchanged due to coordinate rotation (an orthogonal transform).
Consider products of inertia:
As an example: $I_{x y}=-\int_{V} \rho \mathrm{xy} \mathrm{dV}$
A 180° rotation about the x -axis \rightarrow

$$
\Rightarrow I_{x^{\prime} y^{\prime}}=-I_{x y}
$$

$$
\begin{aligned}
& I_{x^{\prime} z^{\prime}}=-I_{x z} \\
& I_{y^{\prime} z^{\prime}}=I_{y z}
\end{aligned}
$$

- In general, the products of inertia have no preferred sign; the sign depends on the orientation of the body with respect to the coordinate system.

For a body with random orientation, positive and negative values of products of inertia are equally likely to occur.

- The moments and products of inertia are a smooth function of the orientation of the coordinate system orientation since

$$
\left[I^{\prime}\right]=[l][I][l]^{T}
$$

relates the inertia properties in two systems
\rightarrow It is possible to find a coordinate system in which the products of inertia vanish simultaneously
\rightarrow Such a coordinate system is called the principal axes of the rigid body.

- Consider the relation (alternate way to think)

$$
\{H\}=I\{\omega\}
$$

\mathbf{Q} : Is it possible to find a coordinate system in which the angular momentum vector is instantaneously parallel to the angular velocity vector?
i.e., can we write $\{H\}=I\{\omega\}$ for some system?

If one can do that, then

$$
[I]\{\omega\}=I\{\omega\}=I[1]\{\omega\}
$$

or

$$
\left[\begin{array}{ccc}
\left(I_{x x}-I\right) & I_{x y} & I_{x z} \\
I_{x y} & \left(I_{y y}-I\right) & I_{y z} \\
I_{z x} & I_{z y} & \left(I_{z z}-I\right)
\end{array}\right]\left\{\begin{array}{l}
\omega_{x} \\
\omega_{y} \\
\omega_{z}
\end{array}\right\}=0
$$

(This is really the eigenvalue problem for the inertia matrix [I]).
If $\{\omega\} \neq 0$, i.e., $\underline{\omega} \neq 0$, then $\operatorname{det}([\mathbf{I}]-\mathbf{I}[\mathbf{1}])=\mathbf{0}$

Or

$$
\left|\begin{array}{ccc}
\left(I_{x x}-I\right) & I_{x y} & I_{x z} \\
I_{x y} & \left(I_{y y}-I\right) & I_{y z} \\
I_{z x} & I_{z y} & \left(I_{z z}-I\right)
\end{array}\right|=0
$$

(this is a characteristic equation, a cubic in I with coefficients I_{ij} :

$$
a_{o} I^{3}+a_{1} I^{2}+a_{2} I+a_{3}=0
$$

Let I_{1}, I_{2}, I_{3} be the roots of the cubic and $\{\omega\}^{1},\{\omega\}^{2},\{\omega\}^{3}$ be the eigenvectors associated with the eigenvalues:

They satisfy
[I] $\{\omega\}^{i}=I_{i}\{\omega\}^{i} \quad \mathbf{i}=\mathbf{1}, \mathbf{2}, \mathbf{3}$.
Clearly, the eigenvectors are known only up to an arbitrary constant, i.e., only the ratio of the components are fixed; in particular, if we assume ω_{x} to be arbitrary and non-zero, the ratios satisfy

$$
\left[\begin{array}{cc}
\left(I_{y y}-I_{i}\right) & I_{y z} \\
I_{z y} & \left(I_{z z}-I_{i}\right)
\end{array}\right]\left\{\begin{array}{l}
\omega_{y} / \omega_{x} \\
\omega_{z} / \omega_{x}
\end{array}\right\}=\left\{\begin{array}{c}
-I_{x y} \\
-I_{z x}
\end{array}\right\}
$$

If one chooses the constraint

$$
\omega_{x}^{2}+\omega_{y}^{2}+\omega_{z}^{2}=1
$$

then the values of ω_{x}, ω_{y} and ω_{z} are direction cosines of $\underline{\omega} \Rightarrow$ they determine the direction of the corresponding principal axis at the reference point P.
It is easy to show that if two principal moments of inertia are distinct, the corresponding eigenvectors are orthogonal, i.e.,

$$
\{\omega\}^{1^{T}}\{\omega\}^{2}=0 \text { if } I_{1} \neq I_{2}
$$

THE ELLPSOID OF INERTIA Read from the text.

Ex. 7.4 (text)

Consider a given body with a coordinate system
 located at its centroid.

In this coordinate system, the inertia properties of the body are given by a matrix [I].

$$
[I]=\left[\begin{array}{ccc}
150 & 0 & -100 \\
0 & 250 & 0 \\
-100 & 0 & 300
\end{array}\right] \mathrm{kg}-\mathrm{m}^{2}
$$

We want to find the principal moments of inertia and the associated directions; also, the coordinate transformation [l], specified by the rotation matrix, which diagonalizes the inertia matrix.
Essentially, we are considering the eigenvalue problem $[I]\{\omega\}=I\{\omega\}$ for $[I]$.

The characteristic equation for the matrix [I]

 is$$
\left|\left[\begin{array}{ccc}
150-I & 0 & -100 \\
0 & 250-I & 0 \\
-100 & 0 & 300-I
\end{array}\right]\right|=0
$$

$\Rightarrow \quad(250-\mathrm{I})\left(\mathrm{I}^{2}-450 \mathrm{I}+3.5 \times 10^{4}\right)=0$
The roots, the principal moments of inertia, are $\mathrm{I}_{1}=100 \mathrm{~kg}-\mathrm{m}^{2}, \mathrm{I}_{2}=250 \mathrm{~kg}-\mathrm{m}^{2}, \mathrm{I}_{3}=350 \mathrm{~kg}-\mathrm{m}^{2}$
We now need to find the eigenvectors, which give directions of the principal axes.

The eigenvalue problem is

$$
\begin{equation*}
[[\mathrm{I}]-\mathrm{I}[1]]\{\omega\}=0 \tag{1}
\end{equation*}
$$

or $\left(150-I_{i}\right) \omega_{x}-100 \omega_{z}=0$
$\left(250-\mathrm{I}_{i}\right) \quad \omega_{y}=0$
a) Consider the 1st eig.val.: $\mathrm{I}_{1}=100 \mathrm{~kg}-\mathrm{m}^{2}$:
(2) $\Rightarrow \quad \omega_{y}=0$
(1) $\Rightarrow 50 \omega_{x}=100 \omega_{z}$ or $\omega_{z} / \omega_{x}=1 / 2$.

Thus $\{\omega\}^{1}=\omega_{x}\{1,0,1 / 2\}^{T}$.
a) Consider the 2nd eig.val.: $\mathrm{I}_{2}=250 \mathrm{~kg}-\mathrm{m}^{2}$: (2) $\Rightarrow \omega_{y}$ is arbitrary
(1) $\Rightarrow-100 \omega_{x}-100 \omega_{z}=0$
(3) $\Rightarrow-100 \omega_{x}+50 \omega_{z}=0$

The only possible solution to these equations is
$\omega_{x}=\omega_{z}=0 \Rightarrow\{\omega\}^{2}=\omega_{y}\{0,1,0\}^{T}$.
c) Consider the 3rd eig.val.: $\mathrm{I}_{3}=350 \mathrm{~kg}-\mathrm{m}^{2}$: (2) $\Rightarrow \omega_{y}=0 \quad$ Then (1), (3) $\Rightarrow \omega_{z} / \omega_{x}=-2$.

Thus, $\quad\{\omega\}^{3}=\omega_{x}\{1,0,-2\}^{T}$.

Note: The three eigenvectors are, as expected, orthogonal to each other.

$$
\{\omega\}^{i T}\{\omega\}^{j}=0, i \neq j
$$

Note that

$$
\{\omega\}^{1},\{\omega\}^{3}
$$ are in $x z$ plane

Clearly, $x^{\prime} y^{\prime} \mathbf{z}^{\prime}$ is the principal coordinate system

The direction cosines for the $x^{\prime} y^{\prime} z^{\prime}$ system are:

$$
\begin{aligned}
& l_{x^{\prime} x}=\cos \theta_{x^{\prime} x}=\cos \alpha_{1}=2 / \sqrt{5} \\
& l_{x^{\prime} y}=\cos \theta_{x^{\prime} y}=\cos 90=0 \\
& l_{x^{\prime} z}=\cos \theta_{x^{\prime} z}=\sin \alpha_{1}=1 / \sqrt{5}
\end{aligned}
$$

Similarly, $\quad l_{y^{\prime} x}=\cos \theta_{y^{\prime} x}=\cos 90=0$,

$$
l_{y^{\prime} y}=\cos \theta_{y^{\prime} y}=\cos 0=1, l_{y^{\prime} z}=\cos \theta_{y^{\prime} z}=\cos 90=0
$$

and $l_{z^{\prime} x}=-1 / \sqrt{5}, l_{z^{\prime} y}=0, l_{z^{\prime} z}=2 / \sqrt{5}$
These allow us to construct the rotation matrix

Thus,

$$
[l]=\left[\begin{array}{ccc}
2 / \sqrt{5} & 0 & 1 / \sqrt{5} \\
0 & 1 & 0 \\
-1 / \sqrt{5} & 0 & 2 / \sqrt{5}
\end{array}\right]
$$

- It is easy to check that

$$
\left[I^{\prime}\right]=[l][I][l]^{T}=\left[\begin{array}{ccc}
100 & 0 & 0 \\
0 & 250 & 0 \\
0 & 0 & 350
\end{array}\right] \mathrm{kg}-\mathrm{m}^{2}
$$

7.9 Displacements of a Rigid Body

Euler's Theorem: The most general displacement of a rigid body with one point fixed is equivalent to a single rotation about some axis through that fixed point
Chasles' Theorem: The most general displacement of a rigid body is equivalent to a screw displacement, i.e., translational motion of a reference point followed by rotation about an axis through the ref. point
Assignment: Read the Section 7.9

7.10 Axis and Angle of Rotation

- We know that the components of a vector in two different coordinate systems are obtained by the application of a rotation matrix [l] whose elements are the direction cosines.

Then, the vector \underline{r} can be written as

$$
\begin{aligned}
& \underline{r}=x \underline{i}+y \underline{j}+z \underline{k}=x^{\prime} \underline{i}^{\prime}+y^{\prime} \underline{j^{\prime}}+z^{\prime} \underline{k^{\prime}} \\
\Rightarrow & \left\{\begin{array}{l}
x^{\prime} \\
y^{\prime} \\
z^{\prime}
\end{array}\right]=\left[\begin{array}{lll}
l_{x^{\prime} x} & l_{x^{\prime} y} & l_{x^{\prime} z} \\
l_{y^{\prime} x} & l_{y^{\prime} y} & l_{y^{\prime} z} \\
l_{z^{\prime} x} & l_{z^{\prime} y} & l_{z^{\prime} z}
\end{array}\right]\left\{\begin{array}{l}
x \\
y \\
z \\
z
\end{array}\right\}
\end{aligned}
$$

A natural question: Is there a vector whose coordinates remain unchanged as the coordinate system xyz is rotated to the coordinate system $x^{\prime} y^{\prime} z^{\prime}$?

If such a vector \underline{r} exists,

$$
\underline{r}=x \underline{i}+y \underline{j}+z \underline{k}=x \underline{i}^{\prime}+y \underline{j^{\prime}}+z \underline{k^{\prime}}
$$

where $\underline{i}, \underline{j}, \underline{k}$ and $\underline{i}^{\prime}, \underline{j}^{\prime}, \underline{k^{\prime}}$ are the basis vectors that define the two coordinate systems, then, given the rotation matrix $[l]$, the relation $\left\{r^{\prime}\right\}=[l]\{r\}$ gives

$$
\left\{\begin{array}{c}
x \\
y \\
z
\end{array}\right\}=\left[\begin{array}{ccc}
l_{x^{\prime} x} & l_{x^{\prime} y} & l_{x^{\prime} z} \\
l_{y^{\prime} x} & l_{y^{\prime} y} & l_{y^{\prime} z} \\
l_{z^{\prime} x} & l_{z^{\prime} y} & l_{z^{\prime} z}
\end{array}\right]\left\{\begin{array}{c}
x \\
y \\
z
\end{array}\right\}
$$

or $\quad 1\{r\}-[l]\{r\}=0 \quad$ must be satisfied.
This is an eigenvalue question for matrix $[l]$.

- Thus, the existence of such a vector $\{r\}$ (or \underline{r}) is associated with matrix [l] having an eigenvalue of 1 . The corresponding eigenvector will then define the direction which remains unchanged due to rotation, and hence, represents the axis of rotation.

7.10 Axis and Angle of Rotation

7.11 Reduction of Forces - equivalent forces and couples

Reading Assignments

7.12 Infinitesimal Rotations

- Consider a sequence of rotations: the new and old representations of the vector \underline{r} are related by

$$
\left\{r^{\prime}\right\}=[l]\{r\} \equiv[\Phi]\{r\}
$$

Ex: Consider a counterclockwise rotation

 about the x axis.Then,
$\left\{r^{\prime}\right\}=\left[\Phi_{1}\right]\{r\}$
where,
the rotation matrix is $\boldsymbol{x}, \boldsymbol{x}$,
$\left[\Phi_{1}\right]=\left[\begin{array}{ccc}1 & 0 & 0 \\ 0 & \cos \phi_{1} & \sin \phi_{1} \\ 0 & -\sin \phi_{1} & \cos \phi_{1}\end{array}\right]$

Suppose we perform two rotations in a sequence:

$\{r\} \rightarrow\left\{r^{\prime}\right\}=\left[\Phi_{1}\right]\{r\}$
$\left\{r^{\prime}\right\} \rightarrow\left\{r^{\prime \prime}\right\}=\left[\Phi_{2}\right]\left\{r^{\prime}\right\}=\left[\Phi_{2}\right]\left[\Phi_{1}\right]\{r\}$
combining $\Rightarrow\{r\} \rightarrow\left\{r^{\prime \prime}\right\}=[\Phi]\{r\}$
where

$$
[\Phi]=\left[\Phi_{2}\right]\left[\Phi_{1}\right]
$$

(combined rotation matrix)

Since matrix multiplication does commute,

$$
[\Phi]=\left[\Phi_{2}\right]\left[\Phi_{1}\right] \neq\left[\Phi_{1}\right]\left[\Phi_{2}\right]
$$

Thus, the order in which rotations are accomplished is crucial to know for finite rotations.

We now show that infinitesimal rotations commute!!

Ex: Consider a sequence of two rotations given below:

1. $x y z \rightarrow x^{\prime} y^{\prime} z^{\prime}$.

Let us call it [Φ_{1}]
2. $x^{\prime} y^{\prime} z^{\prime} \rightarrow x " y " z^{\prime \prime}$

Let us call it $\left[\Phi_{2}\right]$

$$
\begin{aligned}
{\left[\Phi_{1}\right] \equiv\left[\varepsilon_{z}\right] } & =\left[\begin{array}{ccc}
\cos \varepsilon_{z} & \sin \varepsilon_{z} & 0 \\
-\sin \varepsilon_{z} & \cos \varepsilon_{z} & 0 \\
0 & 0 & 1
\end{array}\right] \cong\left[\begin{array}{ccc}
1 & \varepsilon_{z} & 0 \\
-\varepsilon_{z} & 1 & 0 \\
0 & 0 & 1
\end{array}\right] \\
& =[1]+\left[\varepsilon_{1}\right] \\
{\left[\Phi_{2}\right] \equiv\left[\varepsilon_{y}\right] } & =\left[\begin{array}{ccc}
\cos \varepsilon_{y} & 0 & -\sin \varepsilon_{z} \\
0 & 1 & 0 \\
\sin \varepsilon_{z} & 0 & \cos \varepsilon_{z}
\end{array}\right] \cong\left[\begin{array}{ccc}
1 & 0 & -\varepsilon_{y} \\
0 & 1 & 0 \\
\varepsilon_{y} & 0 & 1
\end{array}\right] \\
& =[1]+\left[\varepsilon_{2}\right]
\end{aligned}
$$

Thus, the two sequences give:

$$
\begin{aligned}
{\left[\Phi_{2}\right]\left[\Phi_{1}\right] } & =\left([1]+\left[\varepsilon_{2}\right]\right)\left([1]+\left[\varepsilon_{1}\right]\right) \\
& =[1]+\left[\varepsilon_{1}\right]+\left[\varepsilon_{2}\right]+\left[\varepsilon_{2}\right]\left[\varepsilon_{1}\right] \\
& \cong[1]+\left[\varepsilon_{1}\right]+\left[\varepsilon_{2}\right] \\
{\left[\Phi_{1}\right]\left[\Phi_{2}\right] } & =\left([1]+\left[\varepsilon_{1}\right]\right)\left([1]+\left[\varepsilon_{2}\right]\right) \\
& =[1]+\left[\varepsilon_{1}\right]+\left[\varepsilon_{2}\right]+\left[\varepsilon_{1}\right]\left[\varepsilon_{2}\right] \\
& \cong[1]+\left[\varepsilon_{1}\right]+\left[\varepsilon_{2}\right]
\end{aligned}
$$

Order not important and rotations can be added vectorially. Infinitesimal rotations \rightarrow angular velocities add as vectors

Ex: Consider now a sequence of three

infinitesimal rotations:

1. ε_{x} - about x axis

$$
\{r\} \rightarrow\left\{r^{\prime}\right\}=\left[\varepsilon_{x}\right]\{r\}
$$

2. $\varepsilon_{\mathbf{y}}$ - about \mathbf{y}^{\prime} axis

$$
\left\{r^{\prime}\right\} \rightarrow\left\{r^{\prime \prime}\right\}=\left[\varepsilon_{y}\right]\left\{r^{\prime}\right\}=\left[\varepsilon_{y}\right]\left[\varepsilon_{x}\right]\{r\}
$$

3. $\boldsymbol{\varepsilon}_{\mathbf{z}}$ - about z " axis

$$
\begin{aligned}
\left\{r^{\prime \prime}\right\} & \rightarrow\left\{r^{\prime \prime \prime}\right\}=\left[\varepsilon_{z}\right]\left\{r^{\prime \prime}\right\}=\left[\varepsilon_{z}\right]\left[\varepsilon_{y}\right]\left[\varepsilon_{x}\right]\{r\} \\
& \left.\rightarrow\left\{r^{\prime \prime \prime}\right\} \cong[1]+\left[\hat{\varepsilon}_{z}\right]+\left[\hat{\varepsilon}_{y}\right]+\left[\hat{\varepsilon}_{x}\right]\right]\{r\}
\end{aligned}
$$

Here,
$\left[\hat{\varepsilon}_{x}\right]=\left[\begin{array}{ccc}0 & 0 & 0 \\ 0 & 0 & \varepsilon_{x} \\ 0 & -\varepsilon_{x} & 0\end{array}\right], \quad\left[\hat{\varepsilon}_{y}\right]=\left[\begin{array}{ccc}0 & 0 & -\varepsilon_{y} \\ 0 & 0 & 0 \\ \varepsilon_{y} & 0 & 0\end{array}\right]$
$\left[\hat{\varepsilon}_{z}\right]=\left[\begin{array}{ccc}0 & \varepsilon_{z} & 0 \\ -\varepsilon_{z} & 0 & 0 \\ 0 & 0 & 0\end{array}\right]$

Let
$[\hat{\varepsilon}]=\left[\hat{\varepsilon}_{x}\right]+\left[\hat{\varepsilon}_{y}\right]+\left[\hat{\varepsilon}_{z}\right]$
Then, $[\hat{\varepsilon}]=\left[\begin{array}{ccc}0 & \varepsilon_{z} & -\varepsilon_{y} \\ -\varepsilon_{z} & 0 & \varepsilon_{x} \\ \varepsilon_{z} & -\varepsilon_{x} & 0\end{array}\right]$
and the complete relation is
$\left\{\left\{^{m}\right\} \equiv\left[[1]+\left[\hat{\varepsilon}_{\varepsilon}\right]+\left[\hat{\varepsilon}_{y}\right]+\left[\hat{\varepsilon_{i}}\right]\right](r)=[[1]+[\hat{\varepsilon}]](r)\right.$

Now, apply an infinitesimal rotation to a vector \underline{r} of constant length. e.g.: consider a rotation about z axis. Then,

$$
\left\{r^{\prime}\right\}=[[1]+[\varepsilon]]\{r\}
$$

or $\left\{r^{\prime}\right\}-\{r\}=[\varepsilon]\{r\}$

Note: in the above, we considered rotation of coordinate axes with vector fixed in space \rightarrow any changes in components of \underline{r} are entirely due to coordinate axes rotations.
Now: Consider coordinate system fixed and let the vector \underline{r} rotate in opposite direction.
Suppose that this rotation takes place in time
Δt. Then,

$$
\{\dot{r}\}=\lim _{\Delta t \rightarrow 0} \frac{\left\{r^{\prime}\right\}-\{r\}}{\Delta t}
$$

or $\{\dot{r}\}=\lim _{\Delta t \rightarrow 0} \frac{[-\varepsilon]\{r\}}{\Delta t}=[\omega]\{r\}$ or $\{\dot{r}\}=[\omega]\{r\}$
Here $\quad[\omega]=\lim _{\Delta t \rightarrow 0} \frac{[-\varepsilon]}{\Delta t} \quad \begin{aligned} & \text { the angular } \\ & \text { velocity matrix }\end{aligned}$
The negative sign is introduced so that [ω] refers to rotation of \underline{r} and not to that of the coordinate system.
Recall: for a vector of constant length,

$$
\underline{\dot{r}}=\underline{\omega} \times \underline{r}
$$

$$
\begin{array}{lc}
\text { Thus: } & \underline{\dot{r}}=\underline{\omega} \times \underline{r} \\
\text { and } & \{\dot{r}\}=[\omega]\{r\}
\end{array}
$$

are statements of the same fact in different

 forms.Note: $[\omega]$ is a skew symmetric matrix consider the matrix: $[\omega]=\left[\begin{array}{ccc}0 & -\omega_{z} & \omega_{y} \\ \omega_{z} & 0 & -\omega_{x} \\ -\omega_{y} & \omega_{x} & 0\end{array}\right]$

$$
\begin{aligned}
& \text { Then: } \\
& \{\dot{r}\}=[\omega]\{r\}\left\{\begin{array}{l}
\left(-\omega_{z} y+\omega_{y} z\right) \\
\left(-\omega_{z} x+\omega_{x} z\right) \\
\left(-\omega_{y} x+\omega_{x} y\right)
\end{array}\right\}=\left\{\begin{array}{c}
\dot{x} \\
\dot{y} \\
\dot{z}
\end{array}\right\}
\end{aligned}
$$

Also:

$$
\begin{aligned}
\underline{\underline{r}}=\underline{\omega} \times \underline{r} & =\left|\begin{array}{ccc}
\underline{i} & \underline{j} & \underline{k} \\
\omega_{x} & \omega_{y} & \omega_{z} \\
x & y & z
\end{array}\right| \\
& =\left(-\omega_{z} y+\omega_{y} z\right) \underline{i}+\left(\omega_{z} x-\omega_{x} z\right) \underline{j} \\
& +\left(-\omega_{y} x+\omega_{x} y\right) \underline{k}
\end{aligned}
$$

