CHAPTER 7
Basic Concepts and Kinematics of Rigid Body

Motion
7.1 Degrees-of-freedom:
(of a rigid body)
Consider three
unconstrained particles




The positions are defined by
[i :Xii+yij+zilﬁ | = 1,2,3

= degrees of freedom =n=9 = 3N

Now, constrain the particles =
(three particles placed
at the corners of a
triangle whose sides
are formed by rigid
massless rods)

m, h m




Now: there are three constraints

Ll_LZ‘:Il; ‘£3_£2‘:|2; £1_£3‘2|3

or (Xz - X1)2 T (yz o y1)2 T (Zz - 21)2 o I12 =0, etc.

= N =3(N)-3=6 <« degrees of freedom.

Now: as another particle is introduced, Its
position is specified by 3 additional
coordinates, but also have 3 additional
constraints.

= four rigidly connected particles also
have only 6 degrees of freedom.



In general: a rigid body (any collection of

particles whose relative positions are fixed)
has 6 degrees of freedom.

o translational motion of a point on the
body - specified by 3 translational
deqgrees of freedom.

 rotational motion about the specified
point - 3 rotational degrees of freedom.




LLaws of motion for a system of particles
(extended to a rigid body)

a) > F=mr,

= translational motion of the C.M. (3
degrees of freedom)

b) ZM = Eﬂ about C.M. or an inertially
dt ™ fixed point
= rotational motion about the C.M.
(3 rotational degrees of freedom)



7.2 Moments of Inertia

Recall: the notation
and definitions

The equation for
moment about an
arbitrary point P is:




Now, the angular momentum about the point P
- N
IS .
ﬂ|0 - ZB % miEi
=1

where ,0 - velocity of m. as viewed by a

non- rotatlng observer translatmg with P.
(relative velocity in an inertial frame)

For a rigid body - suppose that P iIs fixed in the
body = ‘p‘ = constant,and p. =wxp.
where @ - angular velocity of the body.



Thus, the angular momentum about P Is =
Z

N
Hy =Y mip, xlexp)
t=1

By analogy:
for a rigid body

rotating with
angular velocity (@) ®

-

X

H, = [ p(r)px(@x p)dV ;dm = p(r)dV |

8



We now consider the various cases:

Reference point P Is at origin:Z

p=X1+Yy]+zK

Then

px(@xp)=[(y* +7°)o,
:xya) —;zw 1 +[-Xyw O)P
y zd— X

X

w=0l+0,]+ok

+(X* +2°)o, - yzm,1j

H-xzo, — yzoo, + (X* + y*)w, 1k



Let us define: | = j o(y? +22)dV
V
l,, = jp(xz +z2)dV ;| = J‘,o(x2 +7°)dV
V V
These are the moments of inertia

| —about x axis
|, —about y axis ~through the reference point O =P
|,, —about z axis
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Similarly, we define products of Inertia:

Ixy — Iyx :_jpxydv
V

XZ I ZX

:—Ip)QdV
V

ly, =1, =—| pyzdV
V
= H,=H,1+H, J+H,k

(angular momentum vector for the body, or
angular momentum about P)
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Here, 4 _
X

y

Z

In compact notation:

| @, + IXya)y +1
H =10+, 0 +1,

H,=1l,0,+1,0, +1,0

Z

Z
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The components of the angular momentum
are 3

H =) Lo, =123

j=1
Note that |.. is the second moment of the mass
distribution with respect to a Cartesian axis.
Radius of gyration
(effective location of K \

a mass point)

, 1=12,3

li
m
or

Iii — mki2
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Three moments of inertia and three products
of inertia specify the inertia properties of a

rigid body with regards to rotational motion.

* Note that P is fixed in the rigid body and
@ 1S the angular velocity of the rigid body.

. No assumption is made concerning the

rotational motion of the xyz system. The

angular velocity in terms of the xyz system,
® =1+, | +o,K

IS valid at the instant considered.

14



* W,,0,,0, 35 well as | are, In general,
functions of time depending on the
orientation of xyz relative to the rigid body.

« To avolid the difficulties associated with
treating Iij as functions of time, often one
chooses xyz system that is fixed to the rigid
body and rotates with It.

» Called a body-fixed coordinate system
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7.3 MATRIX NOTATION:

Consider H=H,1 +H, j+HKk
If 1, ], K are known, the three scalar

components H,, H,, H,can be used to represent
H Y

» Wewrite {H|=1H, ¢ asacolumn vector.

H

_ Z )

« Aforce F can be represented as
F |= \_FX, F, FZJ, a row vector.
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or {Fj={F,{ asa column vector.

. ZJ

A square matrix i1s a n x n array of elements:
e.g. the elements of inertia Iij can be written
as a square matrix

Ixx Ixy Ixz
[I]: Iyx Iyy Iyz
_sz Izy Izz_

This 1s called an inertia matrix for the bod¥7.



The angular velocity vector can be represented
aS (a) 3

{C‘)} =1%y (+ acolumn vector.

.
{0} =| o, o, o,|thetranspose of acolumn
vector gives a row vector, etc.

» consider|w | {H4} 'the product of a row vector
with a column vector

La)J {H} =oH,+oH, +o,H,=0-H
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In scalar components, It Is easy to see that
H=>XI j@; € can be expressed as

Hi=[1]{o]

Clearly, multiplication of {a)} with [I ]
transforms {w} into the vector {H}, usually
with a different magnitude as well as
direction.

=>In general, The angular velocity and the
angular momentum vectors for a rigid
body are in different directions
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Assignment: Complete the review of matrix
operations in 7.3.

7.4 Kinetic Energy

For a system of n particles, the Kinetic energy
s 1 lmeilymg o
2 293 T

where

* V. - speed of the center of mass

- p. - velocity of the i"" particle as viewed
from the C.M.

20



For a set of particles rigidly connected and the
assemblage rotating with angular velocity @,

pi = @Xp;
,éiD,éi:(@X/Qi)[(@xgi):éi[(@xﬂ)
13 C
= T, :Ezmipiupi :%Z@Dpi Xm; p;
i1 i=1 B

(using permutation in scalar triple product)

Now, for a continuous mass distribution

21



1 1
T,=—|polloxpdV ==-w!]
o 2!’)— pxpdV =Zal pp

or T, :%@DI;IC

If P is a fixed point:

T ZEQ)DH O=P

rot 2— — /

In vector matrix notation

T =50 ){He} = {o] {H,]




1

Since {H,} =[1[{o}, T, :E{a)}T |1 ]{w}

If one uses xyz coordinate system located at
the center of mass of the rigid body,

T = {0} [1 {0} =[1u0f 1,0 41,07
+21 oo, +21 00, +2] ,0,0,]/2

In summation, notation

ZZ'U 0,0,

=1l j=1
23



Ex: If @ has the direction of one of the
coordinate axes at an instant,

1. 5
Trot = E Ia)
Here, | - moment of inertia about the axis
of rotation,

® - Instantaneous angular velocity of the
rigid body.
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7-6 Translation of Coordinate Axes

O’x’y’z’- coordinate
system located at the
centroid of the body;
Y" Oxyz-any other coord
1/ system;
X X O’=C-the centroid

O': center of mass: the coordinates of the
center of mass in Oxyz system are (X, Y., Z.)
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Let I)O( | | . - moments of inertia about
XYz axes system

) yy1 77

XIX! ] ylyl ) I ZIZ

= moments of inertia about

centroidal axes

m - mass of the body

Easy to show (read 7.6) that
for moments of Inertia

X' T m(yf T Zf)\

. =1,

. 2 2
I, =1,, +m(X; +2;)

-parallel axis theorem

L, =1, +m(x; +Y;)

7
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For products of inertia

I)Q/ — Ix’y’ —MX. Y.
Ixz — Ix’z’ _mXch
Iyz — Iy’z’ _myczc

 Note that the moments of inertia about the
centroidal axes are the smallest.

« The products of inertia may increase or
decrease compared to those about centroidal
axes depending on the particular case.
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/.7 Rotation of Coordinate Axes
Consider two different coordinate systems. We
assume that the origins for the two systems
coincide. ,»\ |Z
consider a vector:

r=xi+yj+zk
=X1T+Yy'J+7K

These are two ways of expressing the same
vector I .

28



The two systems are characterized by unit
vectors 1, |,k and I', J', K’

Let i =1,
I, 1,1 . arethecosines of the angles
made by the x axis with the X', y" and 2’

directions, respectively.
Note that,

’
Z'X X

'+1,, ) +]

2 2 2
I+ +l, =1

kl

Z'X —~

=1

'+1, ) +1

XX —

—
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Consider the example: 3

z’(K’)

6,

<X

x’(1)

Also, I, =cosé,. , |

X

‘gx'x direction
x(1) @ | angles of

IX -
y X-axis
ez'x )
y’(1°)
y'x = COS Hy.x,

., =cosd,.,
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Similarily, we can write
J=l, U+, )+, K

'y >

K=1,I"+1,)+1,K

7'7 >

Thus, the vector I = XI+Y ] + zKcan be written
as r o X(Ixx_+ Iyx J + sz_)

T y(lx’y|_+ Iy'y .l T Izy_)
T Z(Ixz__l_lyz J +Izz_)

=X1+Yy ) +7'K
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In vector-matrix notation

C o) ()
X Ix'x Ix'y Ix'z X
yie=i o Ly L1 Yy

]
\Z ) _Iz'x Iz'y Iz'z \ZJ

In more compact notation

rry=[1]{r;
where {r}and {r'} are representations of
rand r’ in the two coordinate systems.
It provides relation between components of
the same vector In two coordinate systems.
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Ex: As another example, consider the Kinetic
energy of a rigid body

O =C, the center of mass
of the body. There are
two coordinate axes, xyz,
X,y,Z,
w=w,l+0,]+o,kK

=o )+, ] +w,K
Here {w}and {w'} are two representations of
the same angular velocity vector.

33



Then, the kinetic energy expressions in the two

coordinate systems are
1

and [1]=[1] [I][]

In component form, this transformatlon of

Inertia matrices Is | ZZI
ij m'i'n’ j m'n'
m'=1ln'=1 34




Some properties of the matrix [l].
It Is an orthogonal matrix, I.e.,

1]=[T

[1]  (the identity matrix)

or [IT =[1T"

Since det|l]=det(|

@etI)?=1 = t

I]T) . (true for any matrix)

ne matrix operation with [l]

only rotates a given vector.
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The relation [1]= [I]T [1] can be explicitly
written as
1 ifi=]

3

E | 1. =<
m'i'm'j

m'=1 O

.

(

if i j
These are nine relations in the nine
components of the matrix [l]. Six of the these
equations are linearly independent.

— There are 9 - 6 = 3 rotational degrees of

freedom for a set of orthogonal coordinate axes
(or for a rigid body).
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Ex: Rotation of axes

Consider a vector r
that Is represented
in xyz and x’y’z’
axes. The two
systems are rotated
by 30° with respect
to each other.

Then,

’ Z
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X' =l X+, y+1,z

|, =cos0=1
., =c0s6,, =c0s90=0
|, =cosd, =cos90=0

/

y' =l x+l,y+l,z
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|, =cosd,, =cos90=0,

Iy,y =C0s0,, =Cc0s30 = ﬁlz
l,, =cosd,, =cos60=1/2
2" =1, x+1,,y+l,,z

,, =0, |, =c0s120=-1/2

. = 0530 =+/3/2
rx’\ _1 0 0
=Jy't=|0 3/2 1/2

') |0 -1/2 32
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7.8 Principal Axes consider the inertia
properties of a rigid body

Lo = [ Py +2°)dV
V

l, = j,o(x2 +7°)dV
V

L, = [ p(x* +y*)dV
Then, It Is easy to see that '
Loty *1, = [ 2p(r*)dV
V
where r’=x’+y’+z*=x*+y”+27" = ‘p‘z
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l.e., the sum of moments of inertia IS invariant
to coordinate system rotation.

More generally, tr[l]=sum of diagonal terms is
unchanged due to coordinate rotation (an
orthogonal transform).

Consider products of inertia:
As an example: |Xy — _jpxy dV
V

A 180 ° rotation about the x-axis -

41



Xy Xy
180 1 O —
| AC—— (\ Ixz __Ixz
180° g | .. =1
yZz yZ

 In general, the products of inertia have
no preferred sign; the sign depends on
the orientation of the body with respect
to the coordinate system.

42



For a body with random orientation, positive

and negative values of products of
Inertia are equally likely to occur.

« The moments and products of inertia are a
smooth function of the orientation of the
coordinate system orientation since

117
WEUU
relates the inertia properties in two systems
— It I1s possible to find a coordinate system iIn
which the products of inertia vanish

simultaneously %




— Such a coordinate system is called the
principal axes of the rigid body.

« Consider the relation (alternate way to think)

Hj= 1)

Q: Is 1t possible to find a coordinate system in
which the angular momentum vector is
Instantaneously parallel to the angular
velocity vector?

i.e., can we write {H } = 1 {w} for some
system?

44



If one can do that, then

[Hio) = Hoj=11]ie;

or (1, —1) L, |, ra)x\
L, - 1, [{e,t=0
i sz Izy (Izz_l)_ \a)z,

(This is really the eigenvalue problem for the
Inertia matrix [1] ).

If {w}#0,i.e,@#0, thendet ([1]-1[1]) =0

45



Or (Ixx_l)
|

Xy

ZX

Xy

(I, = 1)
|

Zy

Xz

Yz

(Izz _I)

(this Is a characteristic equation, a cubic in |
with coefficients |;; :

al’+al°+a,l+a,=0.
Let 1., I, l;be the roots of the cubic and

{a)}l | {a)}z | {Q)}B be the eigenvectors
associated with the eigenvalues:

46



They satisfy |

1] {0} =1, {o}  1=123
Clearly, the eigenvectors are known only
up to an arbitrary constant, 1.e., only the
ratio of the components are fixed; In

particular, if we assume @, to be arbitrary
and non-zero, the ratios satisfy

I, -1 1, |[(olo

l,, (I,-0L) ||, /o] -]



If one chooses the constraint
2 2 2
o, +o,+o, =1,
then the values of w,,®, and w, are direction

cosines of w = they determine the direction of

the corresponding principal axis at the reference
point P.

It Is easy to show that If two principal moments
of Inertia are distinct, the corresponding
eigenvectors are orthogonal, I.e.,

(ol (@) =0if 1, =1,
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THE ELLPSOID OF INERTIA
Read from the text.

Ex. 7.4 (text)

Consider a given body with a coordinate system
located at its centroid.

In this coordinate
system, the inertia

properties of the body
> >

y are given by a matrix

1]

49



150 0 -100
[1]=| 0 250 O |kg—m*
—-100 0 300 |
We want to find the principal moments of
Inertia and the associated directions; also, the
coordinate transformation [l], specified by the
rotation matrix, which diagonalizes the inertia
matrix.

Essentially, we are considering the eigenvalue

problem |1 [{w} =1 {w} for [1].

50



The characteristic equation for the matrix [1]
' Jf1s0-1 0 -100 "
0 250 — | 0 =0
- —100 0 3001

= (250—1) (1° —4501+3.5x10") =0

The roots, the principal moments of inertia, are
|, =100kg —m?, I, = 250kg —m?*, I, = 350kg —m’
We now need to find the eigenvectors, which
give directions of the principal axes.

o1



The eigenvalue problem is

[[1]-1[1] {w}=0

or (150-1.) o,—-100 w, =0 (1)

(250-1;) o, =0 (2)
100w, +(300-1) @, =0 (3
a) Consider the 1st eig.val.: I, =100 kg—m?:
2= o,=0
(1) = 50w, =100, Or w,lw, =1/ 2.
Thus {a)}l =w, {1,0,1/ Z}T.
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a) Consider the 2nd eig.val.: |, =250 kg — m::
(2)= o, Isarbitrary

(1) = -100w, —100w, =0

8)= -100w, +50w, =0

The only possible solution to these equations Is

o, =0, =0= {0} =w, {0, 1, 0} .

c) Consider the 3rd eig.val.: I, =350kg —m?:
()= »,=0 Then(1),3)= @, [, =—2.

Thus, {a)}3 =w, {1, 0, —Z}T.
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Note: The three eigenvectors are, as
expected, orthogonal to each other.

{a)}iT {a)}J =0,i#]j
Note that

(o} o}

are in xz plane

»y’
X
Clearly, x’y’z’ is the principal coordinate system

54



The direction cosines for the X" Y’ Z'system are:

|, =Cc0S6, =CoSq, = 2/+/5
l,, =c0sd,, =cos90=0

|, =cosé, , =sing, -1/5

Similarly, 1, =cosé,, =cos90=0,

l,, =cosd,, =cosO0=1 1,

and 1, =-1/+/5,1,,=0,1,, =2/5

=c0s6,,, =cos90 =0

These allow us to construct the rotation matrix
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=] o

[1IT=[1][10T =

1

100
0

' 2/J5 0 1/+5

0

—1/J5 0 2/\5

* |t is easy to check that

0
250

56



7.9 Displacements of a Rigid Body

Euler’s Theorem: The most general
displacement of a rigid body with one point
fixed 1s equivalent to a single rotation about
some axis through that fixed point

Chasles’ Theorem: The most general
displacement of a rigid body Is equivalent to
a screw displacement, I.e., translational
motion of a reference point followed by
rotation about an axis through the ref. point

Assignment: Read the Section 7.9
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7.10 Axis and Angle of Rotation

« We know that the components of a vector In
two different coordinate systems are
obtained by the application of a rotation

matrix [I] whose elements are the direction

cosines. . Z
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Then, the vector r can be written as
r=xi+yj+zk=xr+yJ +zk

C o) )
X Ix'x Ix'y Ix'z X
I —
= Y=L Ly L9y
kZ ) _Iz'x Iz'y Iz'z_ \Z,

A natural question: Is there a vector whose
coordinates remain unchanged as the
coordinate system xyz Is rotated to the
coordinate system X'y'z'?
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If such a vector I exists,
r=xi+yj+zk=xr'+yJ +zk’
where 1, J, k and I', ', k' are the basis

vectors that define the two coordinate systems,
then, given the rotation matrix [l], the
relation {r'}=[l]{r} gives

x) (L. L. L.|(x
X X' X X'y X'z X
Vo=l Ly L9y
kZ) Iz'x Iz'y Iz'z -
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or  1r}—[l]{r}=0 must be satisfied.

This Is an eigenvalue question for matrix [l].

* Thus, the existence of such a vector {r} (orr)
IS assoclated with matrix [I] having an
eigenvalue of 1. The corresponding
eigenvector will then define the direction
which remains unchanged due to rotation,
and hence, represents the axis of rotation.
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7.10 Axis and Angle of Rotation

/.11 Reduction of Forces - equivalent forces
and couples

Reading Assignments
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7.12 Infinitesimal Rotations

« Consider a sequence of rotations: the new
and old representations of the vector r are

Y = = (o]

V4

P (Xy,2)

or (x°,y’,2’)




Ex: Consider a counterclockwise rotation
<

about the x axis.

Then,

=i

where,

the rotation matrix is ™

[q)l] =

1
0
0

0
COS ¢,

—sin ¢,

0

Sin ¢,

Cos¢,

b
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Suppose we perform two rotations in a
sequence:

try =>4y =@ ]ir
i Ay =0, 1
combining = {r}

where  [®]|=[®,|[®,] (combined rotation

matrix)



Since matrix multiplication does commute,
(@] =[D, ]| D, | [, ||,

Thus, the order in which rotations are
accomplished is crucial to know for finite
rotations.

We now show that infinitesimal rotations
commutel!!
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Ex: Consider a sequence of two rotations
given below:

1. Xyz—>x’y’z’. 2.X°y’2 ->x’y”’z2”
Let us call it | D, | Let us call it [ D, |
Z 7’ 9 z’
<t3 “\A,
1 &; y
By
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Sing, O
cosg, O

|12

0 -sing,
1 0
0 cosg,

112
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Thus, the two sequences give:

D, |[@,]= ([ +[&, D[ +[&])
=[1]+[e]+ e ]+1e,]le.]
= [1]+[&]+1e,]

[CD1] [q)z ] = ([ +[e, D[] +[&,]1)
=[1]+[e]+ e ]+ ]le, ]
= [1]+[&]+1e,]

Order not important and rotations can be added
vectorially. Infinitesimal rotations — angular
velocities add as vectors
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Ex: Consider now a sequence of three
Infinitesimal rotations:

1. g, - about x axis

2. €, - about y’ axis

r }:[gy]{r’} :[gy}[EX]{r}

3. €, - about z” axis

(= {r"y=[a]{r"} =[] & |[&]{r]
—{r"} [[1]+ +[5y}+[5 {r}
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Here,

o O O
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Let

[£]= [éX]_I_ :éy]_l_[éZ]
0 g —gy_
Then, [e]=|-¢, 0 g,
g, —& 0

and the complete relation is

{ry = [W+[2,]+[ 4, ]+ [&] [{r} = [+ [£]]{r}
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Now, apply an infinitesimal rotation to a

vector r of constant length.
e.g.: consider a y
rotation about z axis. Ar
Then,

-l
or {1~ {r} =[]{1}

I=-s
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Note: In the above, we considered rotation of
coordinate axes with vector fixed in space

— any changes in components of r are entirely

due to coordinate axes rotations.

Now: Consider coordinate system fixed and let
the vector I' rotate in opposite direction.

Suppose that this rotation takes

At. Then, Ny
- Tt

nlace In time
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Here  [o]l=]|im ¢l the angular
velocity matrix

The negative sign is introduced so that [o]

refers to rotation of I' and not to that of

the coordinate system.

Recall: for a vector of constant length,
r=oxr
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Thus: r=wxr

and - {r} =[w]{r]

are statements of the same fact in different

forms.

Note: [@w] is a skew symmetric matrix

consider the matrix: [w] =
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Then: (~o,y+w,2)| (X

{r} =[wl{r}s (o x+w,2) =1y,
(o, X+a,Y) Z

=(-0,yt+o,2)] +(o,X-0,2)]

+(~o,X+o,y)K
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