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CHAPTER 6

LAGRANGE’S EQUATIONS

(Analytical Mechanics)
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Ex. 1:  Consider a particle moving on a

fixed horizontal surface.

Let,       be the

position and F be

the total force on 

the particle. 

The FBD is:

The equation of motion is     mr F r r tp
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In component form, the equation of motion is

Also, motion is restricted to xy plane

z = 0 - equation of constraint

It is a geometric restriction on where the

particle can go in the 3-D space.

Clearly, there is a constraint reaction

(force) that needs to be included in the 

total force F.

( , , , , , , )
P x

mx F x y z x y z t   

( , , , , , , )
P y

my F x y z x y z t   

( , , , , , , )
P z

mz F x y z x y z t  
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Ex. 2: Consider a particle moving on a surface.

Now, the motion is confined to a prespecified 

surface (e.g. a roller coaster). The surface is 

defined by the relation:

f (x, y, z) - c = 0   - equation of constraint.

The equation of motion will again be the same.

Surface

f(x,y,z)=c

z
m
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• The constraints in the two examples are 

geometric or configuration constraints.

They could be independent of time t, or could 

depend explicitly on it.  For an N particle 

system, if the positions of particles are given 

by                       , the constraint can be written 

as:

This is an equation of a finite or geometric or 

holonomic constraint.

1 2( , , , , ) 0Nf r r r t

1 2 3, , ,.....r r r
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Ex. 3: Double pendulum: it consists of two 

particles and two massless rigid rods

The masses are

Number of coordinates

required is 4  - used

to define the configuration

• There are certain constraints on motion:

m x y1 1 1:( , )

m x y2 2 2:( , )

1 2
( 0 : planar motion)z z

2 2 2 2 2 2

1 1 1 2 2 1 2 1
( ), ( ) ( )l x y l x x y y
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2 equations of constraint (they are

holonomic, geometric, finite etc.)

• Degrees-of-freedom: the number of 

independent coordinates needed to 

completely specify the configuration of the 

system (4 - 2) = 2.

One could perhaps find another set of two 

coordinates (variables) that are independent: 

e.g.,                the two angles with the vertical.

Then, there are no constraints on

1 2, ,

1 2, ,
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Ex. 4:  A dumbbell moving in space

• one possible specification of position is:

- these are 6 variables or coordinates, 

and there is one constraint

1 1 1 1 2 2 2 2: , , ; : , ,m x y z m x y z

2
2 1

2
2 1

2
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2( ) ( ) ( )x x y y z z
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degrees-of-freedom of the system    6 - 1 = 5

• another possible specification for the 
configuration of the system:

Location of center of mass C:                     ;  

and orientation of the rod: ( , ). These are 

independent no constraint relation for 

these variables.

( , , )x y zc c c

Z

X Y

O

m1C

m2
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• generalized coordinates - any number of

variables needed to completely specify the

configuration of a system.

e.g., for the dumbbell in space motion:

there are two sets of 

generalized 

coordinates

Important:  some sets consist of independent 

coordinates (no constraints) where as others 

are not independent.

1 1 1 2 2 2

C C C

(x ,y ,z ,x ,y ,z ),

(x ,y ,z , ,θ)
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Ex. 5:  Ice skate

Basic facts:

Configuration of the

skate can be specified

by the coordinates

(x, y) and the angle .

The ice skates can

only move along the

plane of the skate, i.e.,

in the tangent direction

specified by angle .

(a constraint)

Z
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Let t - tangent to the path, n - normal to the 

path. Then                    for the skate, or

or a constraint which 

depends both, on 

coordinates and 

their time derivatives.

• In general  

Such a constraint is called a kinematical, 

differential, nonholonomic constraint.

v n 0

(  ) ( cos sin )xi yj j i 0

sin cos 0x y 

( , , ,  , ,  , )r r r r tN N1 1 0 
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We have seen then that, in general:

Holonomic constraints are of the form

equality constraints involving only 

generalized coordinates and time

Nonholonomic constraints are of the form

they depend on generalized coordinates, 

velocities, as well as time.

1
( ,...., , ) 0, 1,2,3,....,

j N
q q t j g

1 1
( ,..., , ,...., , ) 0, 1,2,3,...,

j N N
q q q q t j d 



14

Fundamental difference:

• A geometric constraint restricts the 

configurations that can be achieved 

during motion.  Certain regions 

(positions) are inaccessible

• A kinematic constraint only restricts the 

velocities that can be acquired at a given 

position.  The system can, however, 

occupy any position desired (e.g.: one can 

reach any point in the skating rink - it is 

just that one cannot move in arbitrary 

direction).
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We can also write the constraints in the form:

(in differential form)

j = 1, 2, …., d

• Whether a constraint is holonomic or 

nonholonomic depends on whether the 

differential form is integrable or 

nonintegrable.

1 1
1

( ,...., , ) ( ,...., , ) 0,
n

ji n i jt n
i

a q q t dq a q q t dt
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Ex 6: Particle model of a skate: two equal 

masses are connected by a massless rigid rod. 

They slide on the XY plane. G is the centroid

of the system.

•
The other constraints
on motion are:

• length is constant

(holonomic)

• Skate cannot move
along     direction (nonholonomic)  

1 2
0z z

n
0Gv n

2 2 2

2 1 2 1
( ) ( )x x y y 
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We now define these constraints in terms of 

the physical coordinates, and then the 

generalized coordinates qi:

The CG has 1 2 1 2

2 1 2 1

2 1 2 1

1 2 2 1 1 2 2 1

[( ) ( ) ] / 2

Now cos sin

cos ( ) / , sin ( ) /

[( ) ( ) ] /

The nonholonomicconstraint is

( )( ) ( )( ) 0

Gv x x i y y j

n j i

x x l y y l

n y y i x x j l

x x y y y y x x
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The coordinates are:

Generalized coordinates:

Then, the constraints have to be written in 

terms of q’s:

constraints #1 and #2

constraint #3

constraint #4

1 1 1 2 2 2
( , , ) , ( , , )x y z x y z

1 2
0 , 0z z

2 2 2 2

2 1 2 1 2 1
( ) ( ) ( ) 0x x y y z z 

1 1 1 2 1 3 2 4 2 5 2 6
, , , , ,x q y q z q x q y q z q

1 2 2 1 1 2 2 1( )( ) ( )( ) 0x x y y y y x x   
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Constraint #1:  

In differential form

In general form, we have

or

1 1
0 0z z

1 0
dz

dt
dt

1 3
0 or ( ) 0dz d q

6

1

0, 1
ji i jt

i

a dq a dt j

11 1 12 2 16 6 1

11 12 13 14

15 16 1

0

0, 0, 1, 0,

0, 0, 0

t

t

a dq a dq a dq a dt

a a a a

a a a
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Constraint #2:  

In differential form

In general form, we have

or

2 2
0 0z z

2 0
dz

dt
dt

2 6
0 or ( ) 0dz d q

6

1

0, 2
ji i jt

i

a dq a dt j

21 1 22 2 26 6 2

21 22 23 24

25 26 2

0

0, 0, 0, 0,

0, 1, 0

t

t

a dq a dq a dq a dt

a a a a

a a a
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constraint #3:

In differential form

2 2 2 2

2 1 2 1 2 1
( ) ( ) ( ) 0x x y y z z 

2 1 2 1 2 1 2 1

2 1 2 1

1 2 1 2 1 2 1 2 1 2 1 2

1 2 1 2 1 2

1 4 1 4 1 4 2 5 2

5 2 5 3 6 3 6 3 6

( )( ) ( )( )

( )( ) 0

or ( ) ( ) ( ) ( )

( ) ( ) 0

or

( ) ( ) ( )

( ) ( ) ( ) 0

x x dx dx y y dy dy

z z dz dz

x x dx x x dx y y dy y y dy

z z dz z z dz

q q dq q q dq q q dq

q q dq q q dq q q dq
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constraint #4:

1 2 2 1 1 2 2 1

5 2 1 4 4 1 2 5

5 2 1 4 1 2 5 2 4

4 1 5 5 6

( )( ) ( )( ) 0

In Differential form:

( )( ) ( )( ) 0

or

( ) ( ) ( )

( ) (0) (0) 0

x x y y y y x x

q q dq dq q q dq dq

q q dq q q dq q q dq

q q dq dq dq

   



23

• differential form of constraints (in 

general):

A constraint (or differential form) is integrable

if 

These are conditions for exactness (of a 

differential form)

1

0, 1,2,3,.....
n

ji i jt
i

a dq a dt j m

, , 1,2,...,

ji k jk i

ji jt i

a q a q

a t a q i k n
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Ex 7:  Consider a constraint

Mathematically, if integrable, there is a

function such that 

• Comparing:

11 1 12 2 1

11 1 12 2 1

11 12 1

11 1 12 2 1

are

0

In differential form, it is : 0

Suppose that , ,

Clea constraint is integrable:rly,  the 

The integrat

constants

ed form is: 

.

t

t

t

t

a x a x a

a dx a dx a dt

a a a

a x a x a t c

 

1 2

1 2

or 0dx dx dt
x x t

11 1 12 2 1
, ,

t
a x a x a t

0d dt
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Clearly, then

or

Similarily

• These are sufficient conditions for the 

constraint to be integrable.

2

12 11

1 2 2 2 1 2

0
a a

x x x x x x

11 12

2 1

a a

x x

11 1 12 1

1 2

0 , 0t t
a a a a

t x t x
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e.g.:  consider the constraint #3  (j = 3)

Here 

Thus 

Similarly

and  

This constraint is integrable.

1 4 1 4 1 4 2 5 2
( ) ( ) ( )q q dq q q dq q q dq

1 4 4 1
/ 1 / , etc.

j j
a q a q

5 2 5
( ) 0q q dq

1 1 4 2 2 5 3
, , 0

j j j
a q q a q q a

1 2 2 1
/ 0 /

j j
a q a q

4 4 1 5 5 2 6
, , 0

j j j
a q q a q q a



27

Also,
1 3 3 1
/ 0 /

j j
a q a q

5

1 5 5 5 2

1

/ 0 ;
j

j j

a
a q a q q

q

1 6 6 1 1 1
/ 0 / ; / / 0

j j jt j
a q a q a q a t

2 3 3 2
/ 0 /

.

.

j j
a q a q
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Now, consider constraint #4:

Then 

or, 

not an exact differential; i.e., it is not an 

integrable constraint.

41 2 42 1
/ 1 / 1a q a q

41 5 2 42 4 1 43
, ( ), 0,a q q a q q a

5 2 1 4 1 2 5 2 4
( ) ( ) ( )q q dq q q dq q q dq

4 1 5
( ) 0q q dq
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Classification: an N particle system is said to be:

• Holonomic - if all constraints are geometric, 

or if kinematic - are integrable (reducible to 

geometric).

• Nonholonomic - if there is a constraint which 

is kinematic and not integrable.

• Schleronomic - all the constraints, geometric 

as well as kinetic, are independent of time t 

explicitly.

• Rheonomic - if at least one constraint 

depends explicitly on time t.
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Possible and Virtual Displacements

Suppose that a system of N particles, with 

position vectors                        has d

geometric constraints

and g kinematic constraints

Here

1 2, , , Nr r r

1 2 3( , , ,...., , ) 0, 1,2,3,...., ,Ni
r r r r t i d

1

0 , 1,2,...,
N

jji j
i

l r D i g

1 2 3( , , ,...., , ), .Nji jil l r r r r t etc
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In differential form

and

For the given system at time t, with 

position fixed by the values of                      ,   

the velocities cannot be arbitrary.  They 

must satisfy d + g equations.

1

/ 0 , 1,2,..., (1)
N

jij i
j

r t i d

1

0 , 1,2,..., (2)
N

jji j
i

l r D i g

1 2, ,...., Nr r r
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Possible velocities:  the set of all velocities 

which satisfy the (d + g) linear equations of 

constraints.

3N > (d + g) – infinity of possible velocities. 

One of these is realized in an actual motion 

of the system. Let 

These are the possible (infinitesimal) 

displacements.  They satisfy

, 1,2,....,i idr r dt i N

1

0 , 1,2,...., (3)
N

i

jij
j

dr dt i d
t
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and                                                                 (4)

Again, there are d + g equations in 3N 

possible (scalar) displacements 

• Consider two sets of possible displacements

at the same instant at a given position of the 

system:

Both these displacements satisfy the above

equations.

1

0 , 1,2,....,
N

iji j
i

l d r D dt j g

, 1,2, , .idr i N

and , 1,2,...,i ii idr v dt dr v dt i N
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Taking their differences  

and

These are homogeneous relations not 

involving (dt).

Def:                                - virtual displacement

Virtual displacement a possible displacement

with frozen time.  (dt set to 0).

1

( ) 0 , 1,2,...,
N

j jij
i

d r d r i d

ir d r d r

1

( ) 0 , 1,2,...,
N

j jji
i

l d r d r i g



35

Note:  If the constraints are independent of 

time (schleronomic), a possible displacement 

= virtual displacement.
Ex 8:  A particle is moving

on a fixed surface defined

by f (x, y, z) – c = 0.  The

velocity     is always

tangent to the surface

where 

v

0dr n r n 

/ ,
f f f

n f f f i j k
x y z

x

Surface

f(x,y,z)=cz

P

y

dr=vdt
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Ex 9:  A particle is moving on a surface

which itself moves to the right with velocity 

Possible velocities

relative velocity)

Possible displacements

Two possible displacements:

.u

Rv v u

( Rv

( )Rdr vdt v u dt

( ) , ( )R Rd r v u dt d r v u dt

Surface

f(x,y,z)=c(t)

x

z

P

y

vr

v u
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• Thus, a virtual displacement is

Note that

is along absolute velocity direction, 

whereas          is along relative velocity or 

tangent to the surface (frozen constraint)

(set dt = 0).

( ) R RR Rr d r d r v v dt r r

d r

r

u
u

n

et

r

dr



38

Degrees-of-freedom:

N - number of particles

(d + g) - geometric + kinematic constraints

there are n = 3N - (d + g)  independent 

virtual displacements

Problem of Dynamics:

Given a system with - external forces

Initial positions , and initial velocities

compatible with constraints; we need to 

( , , ), 1,2,...., ;i iF F r r t i N
r io vio
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determine the motion of the system of particles, 

i.e., the positions            the velocities      and the 

constraint or reaction forces

•

(3N equations)

•

(d equations)

•

(g equations) 

( ( )),ir t ,ir
, 1,2, , .iR i N

, 1,2,...,i i ii
m r F R i N

1

/ 0, 1,2,...,
N

jij i
j

r t i d

1

0, 1,2,...,
N

iji j
i

l d r D dt j g
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In these equations, the unknowns are:             -

6N unknowns
Thus, additional relations required:

6N - (3N + d + g) = 3N - (d + g) n

(equal to the number of degrees-of-freedom)

Need to define concept of workless constraints.

6.4 Virtual Work

Definition: A workless constraint is any 

constraint such that the virtual work (work 

done in a virtual displacement) of the 

constraint forces acting on the system is zero 

for any reversible virtual displacement.

r Ri i,
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Ex 10: Consider a double pendulum.

The positions are:

Constraints are:

or                                    

(differential form)

1 1 1
r x i y j

2 2 2
r x i y j

2 2 2

1 1
( ) 0 (1)x y 

1 1 1 1
0x x y y 

2 2 2

2 1 2 1
( ) ( ) 0 (2)x x y y 

O

Y

X

A

B
m

m

l

l

1

2
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or

(differential form)

Consider FBD’s

Then,

The equations of motion for A are: 

2 1 2 1 2 1 2 1
( )( ) ( )( ) 0x x x x y y y y   

1

1 1 1
tan ( / )x y

1 2

2

2 1

( )
tan

x x

y y

1 2 2 1 1
: sin sin (3)x mx T T

1 2 2 1 1
: cos cos (4)y my T T mg

2

1

T2

T1

A

mg
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The equations of motion for B are:

2 N – differential equations of motion

2 – equations of constraint

variables (unknowns): 1 1
( ), ( )x t y t

2 2
( ), ( )x t y t

1 2
( ), ( )T t T t

2 2 2
: sin (5)x mx T

2 2 2
: cos (6)y my mg T

2T2

B

mg



44

Ex 11: Consider the motion of an ideal pendulum

The position is

Newton’s Law:  

FBD:

F mr

r xi y j

r xi y j  

X
O

Y

A

m

l

1 g

Rx

A

mg

Ry

The reaction 

force is:

R=Rx i+ Ry j
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Newton’s 2nd law gives 

Constraint on motion is:              

or   

(differentiated form)

or             x dx + y dy = 0

(differential form)

: (1)
x

x R mx

: (2)
y

y R mg my

2 2 2 0 (3)x y l

0 ( 0)xx yy r r  
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Counting:             3 equations

4 variables –

Need one more relation:

- something about the nature of the 

constraint force

Hindsight:  We know      along the rod –

normal to the direction of velocity – does 

no work in motion of the particle (motion 

that is consistent with the constraint).

, , ,
x y

x y R R

x y
R R i R j

R
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Work done in a virtual displacement of the 

system

Ex 12:  Consider a particle

moving on a smooth

surface.  Then the work

done by the constraint

force      in a virtual 

displacement 

(consistent with constraint) is

1

N

i
i i

W R r

R
r

0W R r Rn r 

en

et

r

R

P
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Ex 13:  Consider the same situation, with the 

particle now moving on a moving surface:

Here again

Note however that

since

is not in the tangent direction.

Ex 14:  Consider two particles connected by

a rigid rod:

0W Rn r

0R dr

d r

en

et

r

R

P

u
udt

u

dr

m2

m1 l
X

Z

Y

O
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where

unit vector from 

The length constraint is:   

Differentiating, the constraint on possible 

displacements is: 

Thus,

or 

1 2 2 RR R R e 2 12
R R R

Re
1 2

tom m
2

1 2 1 2( ) ( ) 0r r r r l

1 2 1 2( ) ( ) 0r r d r d r

1 2 1 2 1 2( ) ( ) 0 ( )Rr r r r e r r 

1 2R Re r e r 

X

Z

Y

O

dr2

m2

m1

R2

R1

eR

dr1
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virtual work done on the system (the 

two particles)

Other examples of workless constraints: 

hinged constraints; sliding on smooth

surfaces; rolling without slipping, etc.

Remark: Reaction forces corresponding to 

workless constraints may do work on

individual components of the system.

w

1 1 2 2 1 22 2R RR r R r R e r R e r   

1 22
( ) 0R RR e r e r 



51

Ex 15: A particle moves on

a fixed rough surface.

Clearly, the

work done by the

normal force      in a virtual

displacement is

Note that the friction force

does do work – it can be

accounted for by treating

as an external force.

R

k
f R

0R r

en

et

r

R

P
f= k|R|

f(x,y,z)=0
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The Principle of Virtual Work:

Consider a system of N particles, with positions

Forces acting on the ith particle of mass 

workless constraint forces

external as well

as constraint forces

not accounted for in workless constraint forces.

, 1,2,...,ir i N

: }i ii
m F R
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Static equilibrium for the ith particle  

Suppose that the system also satisfies some 

constraints:

geometric

kinematic

(these are requirements written in terms of the 

virtual displacements)

0, 1,2,...,i iF R i N

1

0, 1,2,...,
N

ij j
j

r i d

1

0, 1,2,...,
N

iji
i

l r j g
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Now, virtual work done by all the forces acting 

on the system as a result of an arbitrary virtual

displacement at a given system 

configuration is

(Note:         are required to satisfy the 

constraint relations, i.e., are the possible 

infinite displacement with frozen time).

• Assume workless constraints:

ir

1

( )
N

i i i
i

W F R r

ir

1

0
N

i i
i

R r
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(scalar eqn.)

If a system of particles with workless constraints 

is in static equilibrium, the virtual work of the 

applied forces is zero for any virtual 

displacement consistent with constraints.

• Also, if the work done at a given 

configuration is zero in any arbitrary virtual 

displacement from that configuration, the 

system must be in static equilibrium.

• Principle of virtual work.

1

0
N

i i
i

F r W
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Ex 16:A inhomogeneous rod AB is resting on two 

smooth planes.  The rod is nonuniform with its

center of mass located at G:  AG:GB = k:(1–k).

Find:  The equilibrium position of the rod.

The constraints are:  the ends must remain in 

contact with respective surfaces.

(l)k
A

O

Bl(1-k)

G
g



57

To properly set up the problem, we need to 

first define a coordinate system so that the 

appropriate position vectors can be defined.

Then, we can define the constraints and the 

virtual displacements.

Let                 - positions of A and B along

the inclined surfaces.  Also, - the angle of 

inclination of the rod.  The constraints are:

and
A B

z z

cos ( )cos
A B

Z Z

sin ( )sin
B A

Z Z
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The variables are described here on the 

picture more clearly:

A

O

B
G

zB

zA

h
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A possible set of virtual displacements

consistent with constraints are shown here:

A

O

B

G

zB

zA

h
A’ G’

B’

zA

zB
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FBD:

Principle of virtual work:

= 0 (workless constraints)

0A A B B GR r R r W r  

0 or 0 0W r W h h

( ) 0W j xi h j

A

B
G

W

RB

RA
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Now,     

• constraints:

sin sin
A

h z k
sin cos

A
h z k

cos /cos , sin /sin
A B B A

z z l z z l

cos sin 1

cos sin 2
A

z

1 cos sin sin cos

2 cos sin

or sin( ) /sin2
A

z l
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differentiating, we get

Thus,

{ cos( ) /sin2 } .
A

z l

{ cos( )sin /sin2 }h l

coskl

cos( )
{ sin cos } 0

sin2

l
kl

arbitrary virtual displacement

{ sin cos( ) /sin2 cos } 0k

or tan (2 1) / tank
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D’Alembert’s Principle:

Consider a system with

• N particles, the masses are given by

• The external force on ith particle

• geometric constraints:

• kinematic constraints: 

constraints reaction forces

i
m

( , , )iF t r r

1 2( , ,...., , ) 0, 1,2,...., ,Ni
f r r r t i d

1

( , ) 0, 1,2,....,
N

jij i
j

l r D r t i g

,( , , ), 1,2,...,iR r r t i N
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• The equations of motion are:

These are subject to the constraints: (in 

differential form)

, 1,2,....,i i ii
m r F R i N

1

( / ) ( / ) 0, 1,2,....,
N

j ji i
j

f r d r f t dt i d

1

( , ) 0, 1,2,....,
N

jij i
j

l d r D r t dt i g
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• Then, the relations satisfied by virtual 

displacements are

and

• The condition on constraint forces for the 

constraints to be workless is:

1

( / ) 0, 1,2,....,
N

j ji
j

f r r i d

1

0, 1,2,....,
N

jij
j

l r i g

1

0
N

i i
i

R r
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Newton’s law   

Workless constraints  

D’Alembert’s

Principle

(a single scalar equation)

(Note:         are not independent.  They 

satisfy the differential constraints).

1

( ) 0
N

i i ii
i

m r F r 

ir

1 1

( )
N N

i i i i ii
i i

m r r F R r  
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Ex 17:  Spherical pendulum with variable 

length

particle of mass m

in OPZ plane;

to OPZ plane

( cos ),

0.

r a b t

a b

,re e
re

X

O

Z

Y

r(t)

P

mg

er

e

e
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position of the ball:

velocity:  

or

acceleration:

virtual displacement:

possible velocity

possible displ.

constraint:   cosr a b t

sinrdr dre rd e rd e

sinP rr re r e r e  

P rr re

P r rr re re  

sinP rr re r e r e  
2 2 2( sin ) rr r r r e  

2( 2 sin cos ) ( sinr r r e r   

2 sin 2 cos )r r e  
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virtual displacement:

External force acting:

D’Alembert’s Principle

Note: on the FBD of the particle, tension 

force also acts along the rod - a workless 

constraint force  

( sin )

sinceconstraint frozen 0 0

or dr b t dt

dt dr

sinr r e r e

cos sinrF mg e mg e mgK

( ) 0mr F r 
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independent virtual displacements

(equations of motion)

Here 

2[ sin ( 2 sin cos )]mr g r r r  

cos 0r a b t

sin [ sin 2 sinmr r r 

2 cos ] 0r  

,

( ) ( ) 0

2( 2 sin cos ) sin 0 ;r r r g  

sin 2 sin 2 cos 0r r r   
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6.5  Generalized Coordinates and Forces

Ex 18:  consider the double pendulum:

the position vectors are

the constraints are

•

•

1 1 1
r x i y j

2 1 2 1 2
( ) ( )r x x i y y j

2 2 2

1 1 1
0x y l

2 2 2

2 2 2
0x y l

O

Y

X

A

B
m2

m1(x1,y1)

l

l

1

2

x1

y1

y2

x2
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Thus, there are:

4 (or 6 counting z’s) variables or generalized

coordinates

• 2 (or 4 if z included) constraints

• n = degrees of freedom = 2.

Need only 2 independent variables (for 

geometric constraints case) to specify the 

configuration at any given time

e.g.:  let           be the two chosen independent

coordinates.  Then, we can write

1 2
( 0, 0)z z

1 2
,y y

2 2 2 2

1 1 1 2 2 2
( ), ( )x l y x l y
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• Note:  geometric constraint now 

automatically satisfied.

• Another possible choice of generalized 

coordinates are:

angles with y axis

2 1 2
( , )r y y

1 2
,

2 2 2 2

2 1 1 2 2 1 2
{ ( )} ( )r l y l y i y y j

2 2

1 11 1 1 1
) ( )r l y i y j r y
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Then

Again: geometric constraints automatically 

satisfied.

1 1 1 1 1 1
sin , cosx l y l

2 2 2 2 2 2
sin , cosx l y l

1 11 1 1 1 2
(sin cos ) ( , )r l i j r

2 1 1 2 2
(sin sin )r l l i

21 1 2 2 1 2
( cos cos ) ( , )l l j r


