CHAPTER 2
KINEMATICS OF APARTICLE

Kinematics: It is the study of the geometry
of motion of particles, rigid bodies, etc.,

disregarding the forces associated with
these motions.

Kinematics of a particle - motion of a point
In space



Interest is on defining quantities such as
position, velocity, and acceleration.,

Need to specify a reference frame (and a
coordinate system In it to actually write
the vector expressions).

Velocity and acceleration depend on the
choice of the reference frame.

Only when we go to laws of motion, the
reference frame needs to be the inertial
frame.




* From the point of view of kinematics, no
reference frame i1s more fundamental or
absolute.

2.1 Position, velocity, acceleration
/ path followed by the
object.

O - origin of a

/ y coordinate system in
X the reference frame.




I'op - POsition vector (specifies position,
given the choice of the origin O).

Clearly, rop changes with time — r4p(t)

velocity vector:

d AT
Ry, _ I _ ~OP
yp—dt&)p(t) lim N
acceleration vector:
. d d?
aP:_VP(t):_2£OP(t)'

—odtT dt
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» speed: Vo =|Vp|= Ve eV,
« magnitude of acceleration:
a, =|a,|=./asa,
the time derivatives or changes in

time have been considered relative to (or with
respect to) a reference frame.

Description In various coordinate systems

(slightly different from the text)

 Cartesian coordinates, cylindrical
coordinates etc.




Let I, ], K be the unit vectors

o : 0
N P

i ]

Cartesian coordinate system:

The reference frameis  x7~--y___ %" 7§
R- it is fixed. g
ixj=k , jxk=i , kxi=] etc

-1, J , K are an orthogonal set. Then,
position of P is: rop=x(t) 1+y(t) | + z(t) K




The time derivative of position is velocity:
_droe  dx(t) -, dy() . dz(t)

Vo = - Ll J+——K
dt dt dt = dt

di d | d k

+X(1) —=+ y(t) —+z(t) —

()dt y()OIt ()dt

If considering rate of change in a frame In
- R -
which i, j, k are fixed, "di _ "dJ _ "dk _

. dt dt dt

w,, _ Ox(t) . dy(t) . dz(t) .
Vo =——1+—= J+—=K
= Vo= LH T It X| velocity vector

Similarily,
"a, =X(t)i+Y(t)j+2(t)k| acceleration vector
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Cylindrical Coordinates:

e,~ unit vector in xy ’
plane in radial direction. / lk
i ] O
€y~ unit vector In Xy X
plane"” toe, in the N i >
direction of increasing ¢ ~ y \\i\)?~<§¢
e

K- unit vector in z. Then, by definition .
r=(x>+vy?)"*: g=tan"(y/x).



The position is: rop=x(t) 1I+y(t) | + z(t) K

Also, Fop=r(9) & + (1) K
and Fop= () cos 1+ r(9) sing | + z(t) k
. ... or /lor
:I e, =CoS@1+sing | = ar/ A
SO,
24’5522 2; but %:r(—sin¢l+cos¢i)
and a—L—r — e,=-SIng1+C0Sy |
a¢ - =4 — i

- Imp. to Note: e, and e, change with
position (¢). :




+ position:  rop=r() & + 2(t) k

OF  Fop=r(¢) cOSY i+ r(9) sing  + 2(t) k
* velocity:

Ve =drg, /dt =re, +rde, /dt+zk +zdk/dt
z- direction(K) fixed — dk/dt=0
Thus

de, /dt = (de, /dg)(d¢/dt) = (de, /dp)p =¢, ¢

or

Vo =re, +rge, + 2K

=radial comp+transverse comp-+axial comp



eacceleration:

a :dypzi(re +rege , + 2K)
=T dt dt T =
=fe, + 1€, +ide, +rpe, +rge, + 7k
Now, ¢e¢, €, —¢e

- |a,=(F-rg’)e, +(2rp+rg)e, + 2k

=radial comp+transverse comp-+axial comp

Spherical coordinates: reading suggested later
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Tangential and Normal Components:
(Intrinsic description)

S Ar

F

O

S - scalar parameter defining distance along
the path from some landmark O'.

- called the path variable.
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Note: s=s(t) (it depends on time).
Suppose that the path is fixed, a given
highway for example. Then, rop=rqp (S)
IS known. Different vehicles travel at
different rates - speeds, changes In speeds.
Properties of the highway, a planar or
space curve are distinct from the motion

s(t).

Ex: automobile traveling along a circular
race track.
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« O and O’ are distinct.

L _ north |,
Position i1s from O, s IS = p
being measured from O,

NOow:

For = Yop (S); S = S(t)
Then

_drep  drgpds ds . Arg
"0 ds dt dtasoo As

v
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AS

P’
P\ Ar
I'o I'op:
0
ConsiAcer Ar. ‘A ‘
r r
=1.,(s) = &,(5)
As>0 AS ‘Ar ‘ AS

- €, depends in orientation on s (location),

Its magnitude Is always one.
— |V =5€,(S) velocity vector
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* velocity Is always tangent to path with
magnitude (speed) =V, =|$e,(s)| =|3|

To find expression for acceleration:
d . . .
ap = a (Sgt (S)) = S€, (S) + S€; (S)

o . d ds e .2 dgt (S)
= S€, (S) +S E (gt (S)) E = SE€; (S) +3S ds

consider e (s)-e(s)=1

ds

To find

(unit vector at every s)
e (0)6(0)} =0 > 26,(9)- 5 0
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L e(s)is L' to 9&)

Let: 28O _ o _ 1, (g
where P
e (s)= de (S) dQC;(S) isa normal vector
ds S

Kk - curvature of the path at the location °s’.
p - radius of curvature at P (at location °s’).

§? V.2
= la, =8e,(5)+—e, (5) =Vpe,(s)+ e,

or aP = atgt (S) T angn (S)
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)

O

A\

Now define: e, =¢€,(S)x e, (S)binormal vector
Note that the vectors e, e ,and e, satisfy

§t°e _gn gn _§b°gb:1;

e.-e.=¢e-e =¢e -e =0.

=t =n
18



Rate of change of unit vectors along the path:

One can show that:

&:&EKen (1)

ds p
% __ & (2) < - torsion
ds T
de e. e

~n :__t n ~hb (3)

ds o T

Frenet’s formulas (in differential geometry)
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deb gn

Ex (2): Suppose we want to show:— =——"

ds T
Consid i(e e )=0 >dgt e +e %—O
onsider IR A T
N de, e, . de, e, . _0
— ) -« _— . —
W Tas T, T s p
J_I’ deb
ds !
e
Also i(e —1) > _b°§b:O
ds ds
de,

Thus — e, 1" —
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de, .
— s IS only along e_
S

Let dgb . gn —_r @
o — w==2n
ds T

T - torsion, 1_ Ty - twist
T

Torsion and twist are like radius of curvature
and curvature.
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Ex 3: A rocket lifts-off

straight up. A radar station
IS located L distance away.

At height H, the rocket has J
speed v, and rate of change /i

1<
1

|

of speed v . R

Find: R,R,R, ¢, d %KRL

the variables measured

by the tracking station.
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We start with velocity:
Vp =V€ =RE, + R¢§¢

e, =Cosge, +SInge,

ve, =Vv(cosge, +singe,)
= Re, +Rde,
Comparing on two sides:
e,: vcosg=Rgp — p=vcosg/R
e.: vsing=R; Also, R=L/cos¢

—Tr

— |vsing=R| |g=vcos?g/L
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Similarly:2

V

a, =Ve, +—e, =(R—Rg?)e, +(Rg +2Rg)e,

yo,

=V(singe, +cosge,,)

comparing on the two sides:

e -

=r °

or

e,

or

VSin ¢ = R — R¢?

R =vsing+v®cos’ ¢/ L

VCoS¢ = Rg + 2R¢

¢ = COS B[V COS ¢ — 2vsin ¢ cos® gv/ L]/ L
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Ex 4: A block C slides along the horizontal
rod, while a pendulum attached to the block

can swing In the vertical plane
x(t)

Find: The acceleration of
the pendulum mass D. oA
Using (X,y,z) coord. system,
re =x(t)1

r, =[x(t)+Isin@]1 +1cosd |

fo =[X(t) +16cosd]i —10sin o j
Py =[X(t)+10cosd—-16sin0]i
—~1[@sin6 + 6 cos O] j 25




Ex5: Aslider Sisconstrained to follow the
fixed surface defined by the curve BCD:

r=al/(l+8&); risinmeters, @ isinradians.

Find: v, as B r=a/(1+ 6)
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Consider the solution using the cylindrical
coordinate system: the unit vectors are e, and e,

The positionis: r¢ =re,
The velocity is Vg =re, +roe,;

Now r=a/(1+8), y 5
6 = csin(mt), 8 = —cw cos(wt) € :
o dr . dr a S
=—0;, —=— - .

do’ do (1+0)
Vg =— a0 e, + as e i
=~ (146" (1+6)~" ° J X




Now we consider the acceleration of the block:
The expression Is:
a, =(F—ré*)e, +(réd +2rd)e,
The various termsin thisexpression are:
0 = —Cw cos(wt); 0 = —cw? sin(wt)
d . ad ad 2a0 0

:E :_(_ ):_ > T 3
(1+0)? 1+60) (1+0)
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2.2 ANGULAR VELOCITY: It defines the
rate of change of orientation of a rigid body -
or, a coordinate frame with respect to another.

|0

Consider
displacement

INn time At.
(displ. + rot.)

Shown is an
Infinitesimal
displacement of
a rigid body

29




@ = lim A—Q defines the angular velocity ®

At—>0 At

« The angular velocity does not depend on the
base point A’ . Rather, it is a property for
the whole body.

« The angular velocity vector will usually
change both its magnitude ‘Q‘ and direction
e, =®/|@| continuously with time.

30



2.3 Rigid Body Motion about a Fixed Point:
The rigid body rotates

> about point O (fixed base

point). P - a point fixed In

the body.

o - angular velocity of the
body relative to XYZ axes.
" Direction of ® - Instant. axis of

rotation. Speed of P S = wr SIN 6.
— velocity |y = ¢ x r|(along tangent to circle)
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The acceleration 1s now calculated, using
the definition that it Is the time-derivative

of velocity: a=d(v)/dt=d(wxr)/dt

a=oxr+oxr

or |a=wxr+ox(@xr)
(Recall: these rates of change are ®.r.t.XY2).

o (0 % (m % T))is directed towards the instantan
axis from P - centripetal acceleration.

* @ x I -tangential acceleration (not really
tangent to the path of P).
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2.4 The Derivative of a Unit Vector:

Let €;,€5,,€3 be an
Independent set of
unit vectors attached
to a rigid body rotating
with angular velocity

O ® . The body rotates
X g 7 relative to the reference
frame XYZ. Thus, for
the unit vectors:

€ =WXxE, €,=WXxe,, €;=wxE

e

33



Assume that the set ( e;,e,,€5) Is - orthonormal
Thus, e, 1'e,; e, L'e;and e, 1" e,

This can also be stated as: e, X e = €,, ElC.
Let o =we, +w,e,+n,e,

(expressed in moving basis)
— €, = (0,8, + @,8, + 0;8;) X &; = 1,8, — 0,
= (0,6, + 0,8, + W;€;) X €, = ®,€; — ;€
€; = (€, + 0,8, + 0;€;) X €3 = 0,8, — W€,
Ex: e, =1, &, :i’ e; =k

Se=0i+o,jrok )



Then, dj/dt=wxi=0,j-o/k
di/dt Z@Xi:a)xk_a)zl
dk/dt=wxk =0, -]

IMPORTANT:

» The rates of change of unit vectors have been
calculated with respect to the (X,Z,Y) system -
also called “relative to XYZ”.

* These rates (vectors) have been expressed In
terms of the unit vectors moving with the body.
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2.0 EXAMPLES:

11) Helical Motion:

A particle moves along
a helical path. The helix
IS defined In terms

of the Cylindrical
Coordinates:

r = R (constant) . / =
Z =kR¢, where k =tan e, \ e
o —helixangle
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Clearly, as ¢ changes with time, so does z.

2 =kR¢, Z=kR¢ =kRa>
« Vo= fe, +rge, +2e, = Rwe, +kRwe,

. a,= —Rw’e, + Roe

e, +kRawe,

* speed Sz‘yp‘ :\//(Ra))2 + (kRw)’ = Rov1+k?
e constant or uniform speed - 5§=0, ® =0

o |P= R(1+ kz)

— a=-Ro’e, =(s"/ p)e,
- radius of curvature of the
path of the particle
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111) Harmonic motion: (Reading assignment)

|&\/\/k\/\/ 1 m 0

m - mass, k - stiffness of the spring
key point: the force is directly proportional to
the distance of the particle from some point —»
X =—@’X: x- displacement
®? >0 -aconstant (square of natural freq.)
Solution: Let  x(t) = A cos(ot + o)
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Here, A - amplitude, o - phase angle

(these are determined by initial conditions X,
X att=0).

Ifa=0,1e, X(t)=0 att=0, x(t) = A cos ot

X simple

Y Y o i e Z’ _____
A‘ \ /P\ T /‘ harmonic
| U U t  motion

39



T =2n/®w - time period of harmonic motion
® - circular frequency

 X(t) = A cos ot
o X(t)=—Awsin ot = Aw cos (ot + %)

o X(t)=—Aw’cos wt = Aw” cos (vt + )

— In simple harmonic motion, extreme values
of position and acceleration occur when the
velocity vanishes. Also, the velocity is out of
phase with position by /2, and the
acceleration is out of phase by .

40



Two-dimensional harmonic motion:

« Consider the spring-mass | ¥
system shown: K
X=—0°X, J=-0Yy _,\/ —>
X(t) = Acos(ot + ); m 2 K
y(t) = Bcos(at + B) §

 Choose reference time

suchthataa =0 — r(t)=x@Mi+y()]
= Acoswtl +Bcos(wt+ f) )

v(t) =—wAsinwtl —oBsin(ot + f) |

a(t) =-o°Acoswti —w’Bcos(wt + j) j

41




Now: cos ot = x/A, and cos (ot + ) =y/B

or, cos et cosp- sinwtsin B=y/B
Using expression for x/A —
y/B= (X/A) cosB- sinmt sinf

— sinot =[(x/A) cosp - y/B] sinp
Since cos? ot + sin® ot =1 —

(sinB)2[(X/A)%+ (y/B)2-2 (x/A)(y/B) cosp]=1

(equation of an ellipse)
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<

Harmonic motion in two
dimensions (a plane)
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2.7 Velocity and Acceleration of a Point In
a Rigid Body

rigid body rotating at
the rate of ® relative
to XYZ.

A, P are two points on the same rigid body
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p - position of P as
measured from A.

Now, Fop=Ipa+p
So, Vp=Vv,+dp/dt
— | Ve
(since | p |= const., p changes only In orientation)
* Vp—V,=wxp=V,,Vvelocity of P @.r.t.
Point A, as viewed In
the reference frame XY/Z.

=V,ToxXp




Now, consider the acceleration:
dp :dyp/dt :d(MA'l'@XE)/dt

=a,tOXp+oOxp

or |dp=aptoxp+ax(@xp)

This Is the acceleration of point P in a rigid
body as viewed w.r.t the frame XYZ; the point
P Is In the rigid body which Is rotating at
angular velocity o relative to XYZ, and this
rotation rate is changing at the rate .
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2.8 Vector Derivative in Rotating Systems

« O-afixed pointin
the body

¢ €1,€5,83-triad of
unit vectors in the
body

* @ - angular velocity
of the body

e Consider now an
arbitrary vector A

It can be represented asA = Aqe; + Aye, + Az




There are

two observers - <

Then,d—A:<

[ stationary with XYZ
‘moving with the body (o).

can be with respect to XYZ (*"dA/dt)

dt | can be with respect to the moving body (*d A/dt)

(depends on the observer)

Let A= ""?dA/dt = rate of change @.r.t. XYZ

Then

A=Ae +Ag, +Ag,+ A6 + A8, + Ag,

(A)r the rate of change w.r.t. the body in which £ are fixed
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Now €, =wxg;; &,=wxe,, €;=wxE,

—> AE, +AE, +AE;=xA

—|A=(A), +oxA
In a more general sense, let A and B be two

bodies; ®5,g - angular velocity of A as
viewed (by an observer) from B;

(Note wg,A = —® /g - angular velocity of B

as viewed from A). Then

(_A)A — (_A)B + W5 0 X A

49



2.9 Motion of a Particle in a Moving
Coordinate System

P

N » XYZ - fixed reference
B frame (really, a given
Z D frame)
ror/ [\Z - Xyz - a frame denoting
a moving body with
o = < angular velocity ®
_ = relative to XYZ.
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O'- origin of
coordinate system iIn
XyZ
R- position of O
I op- POsition of point
P (moving object)
P - position of P @.r.t.O’

Then, the position of
the particle is

Frop =R+p

o1



Then, the velocity with respect to the XYZ Is
for =Vp =R+ p but B — (B)r TOXP
(rate of change of p @.r1l.

the rotating frame (the
rotating body))

—> |Yp =B'+(,£_°?)r t@wx p| -velocity of P o.T.1.
XYZ.

(p), - velocity of P @.r.t. P" in xyz.

R - velocity of O’ @.r.t. XYZ.

R + @ X% p - Vvelocity of a point p’ in the

rotating body which is coincident with P at
this instant. 52




i'op =dv, /dt =ays acceleration in XYZ frame
or a, =0|[B+(g)r +wx p]/dt

=R+d(p), /dt+ax p+wxdp/dt

Now d (p), /dt = (5), +@x(p),
and dp/dt=(p), +oxp

— |8, =R+ax p+(p), +20x(p), +@x(@x p)

coriolis centripetal
This Is the most general expression for accel
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Ex: Motion of a Particle Relative to Rotating

Earth
We now consider one of the application of the

general formulation for acceleration when a rotating
reference frame is quite natural. Here, an object Is
moving and its motion is observed by someone

moving with earth. Assumptions:
e Earth rotates about the sun.

 The acceleration of center of earth is, however,
relatively small compared to gravity and
acceleration on the earth’s surface due to
earth’s spin, especially away from poles.
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=/
C

O-center ‘
C

-5
N

O’-location of observer
on earth’s surface

y

2,
\ :

\ .

X meridian circle

parallel
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Basic definitions:
X - local south (tangent to the meridian circle)

y - local east (tangent to a parallel)

¢ - longitude (defines location of a meridian
plane relative to plane through Greenwich)

A - latitude (defines location of a parallel
relative to the Equator)

Z - local vertical
XYZ - Fixed Frame located at O - center of

the earth
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More definitions:
OXY - Equatorial plane
O/Z - axis of earth’s rotation

Xyz - attached to the surface of earth at O’

(at latitude - A ; longitude - ¢)

® - angular velocity of the moving frame
= —QcosA1+QsIinA k

Note: @ isconstant—® =0

(for a vector to be constant, both its
magnitude and the direction must remain
constant w.r.t. the reference frame)



Now, we use the notation already established

to define the kinematics:
R - position vector of O’ to O.
p - position of the mass particle relative to

O’ (the point on earth’s surface)

P = XI+Yy]+zZK

(P): _(dp/dt)reltoxyz =X1+y]+2K

(p)=X1+¥ J+ZkK

wx p=(—€QCos Al +QsIn AK)x (X1 +Y | + zK)
=Qf-ysin A1 +(zcos A+ xsIin 4) ] — ycos AK]
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wx(@x p)=Q°[-sinA(zcos A+ xsin A) 1
—Yy J—cosA(zcos A+ Xxsin A)K]
(centripetal acceleration)

20%(p); =2(-€2cos A1 +QsIn AK) x (X1 + Y ] + ZK)

=20 -ysin A1 +(2cosA +XsIin 4) ] — ycos AK]

(coriolis acceleration)
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Finally, oxp=0
Now:
a, =R+ax p+(P), +20x(p), +@x(@x p)

R =Rk (constant w.r.t. Xyz)
R=(dR/dt) g 1o xyz =@%R

@ x(@xR)
Q’R(—cosAsin A i —cos® Ak)
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Note: Q=7.29x107 rad/sec

a, = Q°R(-cosAsin i —cos* 1k)+0
+2Q[-ysin A1 +(ZcosA+X%xsIin 1) |
— ycos AK]
+Q°[-sin A(zcos A+ xSinA)i - j
—Cc0sA(zcos A+ xsin A)K]
+x1+yi+zg

e close to earth’s surface —» Q°X < QZR, etc.
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a, ~ Q°R(—cosAsin A i —cos® 1k)
+2Q[-ysin A1 +(zcosA+Xsin k) |
—ycos AK]
+X1+y)+ZK

(for motions near earth’s surface).

 Since Q=7.29x10", O° termsare also
neglected in study of most motions close to
earth’s surface. Note that this depends also
on the latitude A of the point O’.
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Ex: Motion of a Particle in Free Fall Near
Earth’s Surface

Z (local north)

- Consider a particle 1

moving close to the fm

earth’s surfare; rmg

- We will write the ol ! )

equations of motion ! "y (local east)

using the co- / \

ordinate system

attached to the l _ o

surface of moving o L_Jnlform g_rawtatlonal
field W=-mgk

earth;
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Newton’s 2nd Law: XF =map
(in an inertial frame)

-mgk=ma, — —gk=a,

Neglecting QZ terms and air drag —»

11 X-=2QysinA=0 (1)
) y+2Q(xsinA+2cos1)=0 (2)
k: Z-2Qycosl+9g=0 (3)

Note: €°terms also need to be always
neglected In calculations to follow. N



Initial conditions are:
x(0) =0, y(0) =0, z(0) =h; x(0) =y(0)=2(0)=0

(1) > x—2QysinA=constant=0 (4)
(3) > 72—-2QycosA+gt=constant =0 (b)
(4),(5) in (2)—>
y+2Q(2Qysin® 1 +2Qycos” A —gtcos A1) =0
or y—2QqgtcosA=0

— |y=Qqgt’cos /3| (6)
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(4), (6) — x=(2/3)Qgt’sinAcosA=0
— |X(t) =0 (7)

(5), (6) > 2=(2/3)?gt®cos® 1 —gt = —qt
— |z(t)=h—-gt*/2 (8)

Time to reach earth’s surface:z=0 - t=./2h/g
Coordinate of the landing point:

X=0, y= (2/3)Qh«/2h/g cosA, z=0
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Schematics

;Z (local north)

f
\

h \

\

/% ﬂ/\ Yy (local east)

l (2/3)Qh«/2h/g COS A

O
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2.10 Plane Motion (motion of a 3-D rigid
body In a plane)
* There exists a plane such that every point

has velocity and acceleration parallel to this
one fixed plane.

lamina of motion
//

All planes are moving
. parallel to the the plane
colored green. This
lamina contains the
. centroid of the rigid
body.
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Consider motion in the
plane called the ‘lamina
of motion’.

Let w- angular velocity
of the body (same for
every plane in the body
and | R to the lamina of
motion).

Letv,, v —Vvelocitiesof Aand B, two points

Inthelamina. Thenv, =v, +ox p
This relates velocities of two points on the same
rlgld bOdy 69



Question: Does there exist a point such that its
velocity Is zero, even If only instantaneously ?

 Suppose that C be such a point: v~=0.
Then, considering points A and B, velocities are:
Va=Vet@xpea—> VL' pe, and

r
Vg =Ve +@0Xppg—> VgL peg

Assuming that v. = 0) _ _
sing these, we cati construct and find the point

C, as well as the angular velocity ¢y, given the
velocities V , andV ; for points A and B.
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Consider the construction on
Y8 the left. Points A and B are

given with their velocities.

Then, one can follow the

construction and note that
Vo =@Xxpc, and

_— P - -

e e EARRETED

Vg =@OX P g

(Assuming that v. =0)
C - instantaneous center (of zero velocity)

0 =|y|/|pes = Vol
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Ex: RO”'”Q Motion: Consider a wheel moving
' on the fixed ground.
O’ - center of wheel
Let: v, - velocity of O’
® - angular velocity
of the wheel
cs They are not independent
In rolling.
» Two physical points C,, , Cs ;one belongs to
the wheel, the other to the ground on which
It is rolling —» Ve, =Ve,

- Ground fixed » V. =0—>Vv. =0.




» wheel Is one rigid body Ve, =0—>C, IS
the instant center (of zero velocity).
» Then Vo =V, +@x o =@ x(-1j)

=0l =V,1 =V, =or

(thisisalways valid)
differentiating with respect to time —

Vo =385 = of

« Let W =angular acceleration of the wheel.
—>a,. = or or

a, =0l =arl
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Now, consider acceleration of the wheel center.

The relation Is:

Qo =8c +OX Peo +OX(@X Peoy)
Pco = T1;
WX Peo :O‘KX(_Q) =arl

—arl =a. +arl +ex(@x-rj)

—|a. =—okxori =-w’r]

(i1t is directed towards the wheel center).
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Reading assignment;
Examples 2.3, 2.4-2.5, 2.7

Example 2.6

Consider a wheel of radius i
[, rolling inside the N
fixed track of radiusry. 1, !
The arm OO 'rotates

at a constant angular !
velocity @ about the 0
fixed point 0. |
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Find: The velocity v;

and acceleration a, of a
point P on the wheel,
specified by angle ¢ ry
w.r.t. line 00’ . ;
First Method: ()’E T,
O - origin of the fixed i
frame; Arm is the moving
frame; O’- origin of the
moving coordinate system. =N

(e, €, &) - a unit vector triad e,




Vo =R+(p), +@x p=Vo +(p), +@x p
where R = Vo: P=Tlop

Now [R=r,, =—-Re, =—(r,—-1,) ¢,

SO 3 = _(rl - rz)gn = _(r1 - I’Z)Q)X €,

=—(r—-n)og, xe, =(L—nL)we =V,

Also p=r,(cosge +singe,)

— (p), =rp(-singe, +cosge,)
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Wx p=wg, XN, (Cospe +singe,)

=—l,CoSp e +wr,Singe,

>V, =(r,—1,)we, +r,¢(-singe, +cosge,)
+wr,(—cosg e +singe, )

Rolling Constraint : yg =0,

and P =C when ¢=r

—> Ve =(—h)oe, + r2¢§t+wr2 g =0

or or, =¢r, — | =or,/r,| (alwaysvalid)
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S0, Vp =[(, —1I,) +1,COS¢ —T, COS plwe,

+[-rsing +r, sin glwe,
or [v, = (r,—1,)a{[L+cosgle, —singe,}

Also, g =aor, /1, > |¢ =0

Acceleration:

3, = R+@x p+ox(@xp)+(p), +20x(p),
E =(r—-n)o(we, xe,)=(r - rz)a)zgn

wxp=0
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Consider the other terms::
wx(wx p)=we, x|-or, cosge, + wr,singe ]
= w’r,(-cosge  —singe,)
(D), = ,p(-singe, +cos ge,)
+ I, p(—pcosge, —gsinge,)
= w’r’(-cosge  —singe,)/r,
20%(p), =2we, xwr[-singe, +cosgpe, ]

= 2w°r,(cos ge, +singe,)

80



Thus, the acceleration Is
ap = (I - I’Z)a)zgn "'a)zrz (—cosge, —singe,)
+°r’(—cosge, —singe ) /T,

+2w°r,(cos ge. +singe, )

ap =[(r, - rz)a)2 _a)z(rl — r2)2 cosgl/,]

_[a)z(rl ~ r2)2 sing/r,]e,
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Second Method: Y
L_et wheel serve as the

moving frame;O’- origin 0/ X
of the moving coordinate r,
system, attached to _
the wheel. P

. 09' 2
Then, @ =(w—-9)g, i

O_l:(d)_&)gb_l_(w_&)gb C

€, =wxe, =0 e,

e

_)C_Z:Q:(d)_%)gb



R=r,, =—REe, (Note :O'ison thearm)

gzwng_Rgn:a)Rgt (R=r-r,)

p=,(cos ge, +sin ge,)
(p), =0 (moving frameattached to the wheel)

x p=(w—@p)e, x1,(Cosge, +sin ge,)
= (- @), (sin ge, —cos ge,)
-V, =a(r,—r,)e + (o —@)r,(sin ge, —cos ge,)
Now, the constraint is Rolling
—> V. =0and P=C when ¢=r

IS
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Imposing constraint v-=0 —»

d=orlr,| > ¢=0(since @=0)

Ve = (rl - rz){1+ COS ¢}a)§t
%

+(r, —r,)wsin ge,

Acceleration:
(E)r =0; E:a)z(rl —1,)€e,

.etc.



Rate of Change of a vector in a Rotating
Reference Frame

e Letd and B be two reference frames, B moves
relative to d

e {E,E, E;}— orthonormal
basis In d E,
e {e,,e,,e,} — orthonormal
basis in 3B

[oF

Reference
We can express: frame d
b=Db,e,+b,e,+b,e,
In the basis {e,,e,,e;} E,
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