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CHAPTER 2

KINEMATICS OF A PARTICLE

Kinematics: It is the study of the geometry 

of motion of particles, rigid bodies, etc., 

disregarding the forces associated with 

these motions.

Kinematics of a particle  motion of a point 

in space 
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• Interest is on defining quantities such as

position, velocity, and acceleration.

• Need to specify a reference frame (and a 

coordinate system in it to actually write 

the vector expressions).

• Velocity and acceleration depend on the 

choice of the reference frame.

• Only when we go to laws of motion, the

reference frame needs to be the inertial 

frame.
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• From the point of view of kinematics, no

reference frame is more fundamental or

absolute.

2.1  Position, velocity, acceleration

path followed by the

object.

O - origin of a

coordinate system in 

the reference frame.
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rOP - position vector (specifies position, 

given the choice of the origin O).

Clearly, rOP changes with time  rOP(t)

velocity vector:

acceleration vector:

0
( ) lim .

OP

P OP
t

rd
v r t

dt t
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• speed:

• magnitude of acceleration:

Important: the time derivatives or changes in 

time have been considered relative to (or with

respect to) a reference frame.

Description in various coordinate systems

(slightly different from the text)

• Cartesian coordinates, cylindrical 

coordinates etc.

P P P Pv v v v  

P P P Pa a a a  
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Let                be the unit vectors

Cartesian coordinate system:

The reference frame is 

- it is fixed.

 are an orthogonal set. Then, 

position of P is:  rOP=x(t) i+y(t) j + z(t) k

i j k, ,

i j k j k i k i j etc     , , .

i j k, ,

i j

k
z

O

x y

P

P’

y x

z
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The time derivative of position is velocity:

If considering rate of change in a frame in 

which             are fixed,

 velocity vector

Similarily,

acceleration vector

i j k, , 0
d jdi dk

dt dt dt

 

  

( ) ( ) ( )

( ) ( ) ( )

OP

P

dr dx t dy t dz t
v i j k

dt dt dt dt

d jd i d k
x t y t z t

dt dt dt

   

  

( ) ( ) ( )
P

dx t dy t dz t
v i j k

dt dt dt

   

( ) ( ) ( )Pa x t i y t j z t k   
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Cylindrical Coordinates:

er- unit vector in xy 

plane in radial direction.

e- unit vector in xy

plane       to er in the

direction of increasing 

k- unit vector in z.  Then, by definition

r

x
y

z

e

r

e

x

y

z

r


P

O

P’

k

2 2 1/2 1( ) ; tan ( / ).r x y y x   
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The position is: rOP=x(t) i+y(t) j + z(t) k 

Also,                  rOP=r() er + z(t) k

and            rOP= r() cos i+ r() sin j + z(t) k



Also,

• Imp. to Note:                   change with 

position ().

e and er 

cos sinr

r r
e i j

r r
 

 
  

 

but ( sin cos )

and sin cos

rr r
e r i j

r
r e i j
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• position:       rOP=r() er + z(t) k

or        rOP= r() cos i+ r() sin j + z(t) k

• velocity:

z- direction         fixed  

Thus

or

=radial comp+transverse comp+axial comp   

( )k 0dk dt 

P OP r rv dr dt re r de dt zk z dk dt    

( )( ) ( / )r r rde dt de d d dt de d e      

P rv re r e zk  
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•acceleration: 

;r re e e e    

( )
P

P r

r r

dv d
a re r e zk

dt dt

re re r e r e r e zk



  



  

   

     

Now,



=radial comp+transverse comp+axial comp

Spherical coordinates: reading suggested later

2( ) (2 )P ra r r e r r e zk      
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Tangential and Normal Components:

(intrinsic description)

s - scalar parameter defining distance along 
the path from some landmark      .

- called the path variable.

O

z

O‟

s

x
y

P
P‟

s
rOP

O

path

r
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Note:  s  s(t)  (it depends on time).

Suppose that the path is fixed, a given

highway for example.  Then, rOP= rOP (s)

is known.  Different vehicles travel at 

different rates - speeds, changes in speeds.  

Properties of the highway, a planar or 

space curve are distinct from the motion 

s(t).

Ex: automobile traveling along a circular 

race track.
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• O and      are distinct.         

Position is from O, s is

being measured from      .

Now:

O

O

a

O 

O‟

P
vP

rOP

north

east

s(t)

0

( ); ( )

Then

lim

OP OP

OP OP P

P
s

r r s s s t

dr dr rds ds
v

dt ds dt dt s 
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Consider 

• depends in orientation on s (location),

its magnitude is always one.

 velocity vector

et

O

P

P‟

rOP rOP‟

s

r

rP

P

P‟

s

et(s)

0
lim lim .lim 1. ( ) ( )

PP P

t t
s

P

rr r
e s e s

s sr 

 
  

 

( )P tv se s
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• velocity is always tangent to path with

magnitude (speed) = 

To find expression for acceleration:

To find              consider

(unit vector at every s)

de

ds

t , ( ) ( ) 1t te s e s 

( )P tv se s s 

2

( ( )) ( ) ( )

( )
( ) ( ( )) ( )

P t t t

t

t t t

d
a se s se s se s

dt

de sd ds
se s s e s se s s

ds dt ds

  

   

 
( )

( ) ( ) 0 2 ( ) 0t
t t t

d de s
e s e s e s

ds ds
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Let:        

where

 - curvature of the path at the location „s‟.

 - radius of curvature at P (at location „s‟).



( )
( ) is tor t

t

de s
e s

ds


( ) 1
( )

( ) ( )
( ) / is a normal vector

t
n n

t t
n

de s
e e s

ds

de s de s
e s

ds ds
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( ) ( ) ( )

or ( ) ( )

P
P t n P t n

P t t n n

s v
a se s e s v e s e

a a e s a e s
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Now define:                             binormal vector( ) ( )b t ne e s e s 

Note that the vectors , ,and satisfy

1;

0.

t n b

t t n n b b

t n t b n b

e e e

e e e e e e

e e e e e e

     

     

O‟

O

yx

z

rOP

en

et

eb

et

vP

en


s
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Rate of change of unit vectors along the path:

One can show that:

(1)

(2)   - torsion

(3)

Frenet‟s formulas (in differential geometry)

t n

n

b n

n t b

de e
e

ds

de e

ds

de e e

ds
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Ex (2): Suppose we want to show: 

br

b

de
e

ds
 

b nde e

ds 
 

( ) 0 0
t b

t b b t

de ded
e e e e

ds ds ds
      

0
t n b n

t b

br

t

de e de e
e e

ds ds

de
e

ds

 
      

 

( 1) 0
b

b b b

ded
e e e

ds ds
    

Consider

Now

Also

Thus
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Let      

 - torsion ,                      - twist

Torsion and twist are like radius of curvature

and curvature.

1


 w

is only along 
b

n

de
e

ds

b n

w n

de e
e

ds
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Ex 3:  A rocket lifts-off 

straight up.  A radar station

is located L distance away.  

At height H, the rocket has 

speed v, and rate of change 

of speed     .

Find:  R ,

the variables measured

by the tracking station.  

v

 ,  ,  , R R  


h

L

R

v, a
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We start with velocity:

2

cos sin

(cos sin )

Comparing on two sides:

: cos cos /

: sin ; Also, / cos

sin cos /

P t r

t r

t r

r

r

v ve Re R e

e e e

ve v e e

Re R e

e v R v R

e v R R L

v R v L
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Similarly:
2

2

2

2 3

2

( ) ( 2 )

(sin cos )

comparing on the two sides :

: sin

sin cos /

: cos 2

cos [ cos 2 sin cos / ] /

P t n r

r

r

v
a ve e R R e R R e

v e e

e v R R

or R v v L

e v R R

or v v v L L
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Ex 4: A block C slides along the horizontal 

rod, while a pendulum attached to the block 

can swing in the vertical plane

Find: The acceleration of

the pendulum mass D.

Using (x,y,z) coord. system,
O,A

x(t)



C

D

B

i

j

2

2

( )

[ ( ) sin ] cos

[ ( ) cos ] sin

[ ( ) cos sin ]

[ sin cos ]

C

D

D

D

r x t i

r x t l i l j

r x t l i l j

r x t l l i

l j
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Ex 5:  A slider  S is constrained to follow the 

fixed surface defined by the curve BCD:

Find: vS, aS

/(1 ); is in meters, is in radians.r a r  

D



B

A
y

x
O

r

a

C

S

r=a/(1+ )
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Consider the solution using the cylindrical 

coordinate system: the unit vectors are 

The position is:

The velocity is 

2

2

;

Now /(1 ),

sin( ), cos( )

;
(1 )

(1 ) (1 )

S r

S r

v re r e

r a

c t c t

dr dr a
r

d d

a a
v e e
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O
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Now we consider the acceleration of the block:

The expression is:
2

2

2 2 3

( ) ( 2 )

The various termsin this expression are:

cos( ); sin( )

2
( )

(1 ) (1 ) (1 )

S ra r r e r r e

c t c t

d d a a a
r r

dt dt
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2.2  ANGULAR VELOCITY: It defines the 

rate of change of orientation of a rigid body -

or, a coordinate frame with respect to another.

Consider 

displacement

in time t.

(displ. + rot.)

Shown is an 

infinitesimal 

displacement of 

a rigid body
Chasles‟ Theorem

z

x
y

O



P

A

P‟

A‟

P”


Base Point

s
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defines the angular velocity

• The angular velocity does not depend on the 

base point .  Rather, it is a property for 

the whole body.

• The angular velocity vector will usually 

change both its magnitude and direction

continuously with time. 



A

0
lim

t t




 







/e  
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The rigid body rotates 

about point O (fixed base 

point). P - a point fixed in 

the body.

- angular velocity of the

body relative to XYZ axes.

Direction of      - instant. axis of

rotation.  Speed of P

 velocity                    (along tangent to circle)

2.3  Rigid Body Motion about a Fixed Point:





sin .s r 

v r 

X

P

Z

O

Y

v

r
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The acceleration is now calculated, using 

the definition that it is the time-derivative 

of velocity: 

(Recall: these rates of change are             XYZ).

• is directed towards the instantan 

axis from P - centripetal acceleration.

• - tangential acceleration (not really 

tangent to the path of P).

. . .r t
( ( ))   r

r 

( ) ( )a d v dt d r dt  

or ( )

a r r

a r r
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2.4  The Derivative of a Unit Vector:

Let                 be an  

independent set of                

unit vectors attached 

to a rigid body rotating  

with angular velocity

. The body rotates 

relative to the reference 

frame XYZ. Thus, for 

the unit vectors:                     

e e e1 2 3, ,


X

Z

Ye1

e3

e2



O

1 1 2 2 3 3, ,e e e e e e       
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Assume that the set (               ) is - orthonormal

Thus,         

This can also be stated as:

Let                     

1 2 1 3 2 3; andr r re e e e e e  

1 2 31 2 3

1 2 3 2 31 1 2 3 1 3 2

1 2 3 3 12 1 2 3 2 1 3

1 2 3 1 23 1 2 3 3 2 1

1 2 3

(expressed in moving basis)

( )

( )

( )

: , ,

x y z

e e e

e e e e e e e

e e e e e e e

e e e e e e e

e i e j e k

i j

x

k

E

   

    

    

    

   

  

      

     

     

  

   

e e e1 2 3, ,

1 2 3, etc.e e e 
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Then,         

IMPORTANT: 

• The rates of change of unit vectors have been

calculated with respect to the (X,Z,Y) system -

also called “relative to XYZ”.

• These rates (vectors) have been expressed in 

terms of the unit vectors moving with the body.

z y

x z

y x

d i dt i j k

dj dt j k i

dk dt k i j
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2.6 EXAMPLES:

ii) Helical Motion:

A particle moves along 

a helical path. The helix 

is defined in terms

of the Cylindrical 

Coordinates:

(constant)

, where tan

helix angl

,

e

r R

z kR k 





 



z

x
y

er


e

R

z

P

O



ez
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Clearly, as changes with time, so does z.

So,

• vP=

• aP=

• speed 

• constant or uniform speed 

• - radius of curvature of the   

path of the particle

0, 0, ,

,

r r

z kR z kR kR

   

  

   

  

r z zre r e ze R e kR e      
2

r zR e R e kR e    
2 2 2( ) ( ) 1Ps v R kR R k      

2 2

0, 0

( / )R n

s

a R e s e



 

 

   
2(1 )R k  
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iii) Harmonic motion:  (Reading assignment)

m - mass, k - stiffness of the spring

key point: the force is directly proportional to 

the distance of the particle from some point 

x- displacement

- a constant (square of natural freq.)

Solution: Let     x(t) = A cos(t + )

2 ;x x 

2 0

m
x(t)k
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Here, A - amplitude,  - phase angle

(these are determined by initial conditions x,     

at t = 0).

If  = 0, i.e.,                at t = 0, x(t) = A cos t

simple

harmonic

motion

x
( )x t  0

x

t

T
A
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T = 2/ - time period of harmonic motion

 - circular frequency

• x(t) = A cos t

 In simple harmonic motion, extreme values 

of position and acceleration occur when the 

velocity vanishes. Also, the velocity is out of 

phase with position by /2, and the 

acceleration is out of phase by .

( ) sin cos ( )
2

x t A t A t


       

2 2( ) cos cos ( )x t A t A t        
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Two-dimensional harmonic motion:

• Consider the spring-mass

system shown:

• Choose reference time 

such that  = 0  

y



x
k

km

2 2;

( ) cos( );

( ) cos( )

x x y y

x t A t

y t B t

 

 

 

   

 

 

( ) ( ) ( )r t x t i y t j 

2 2

cos cos( )

( ) sin sin( )

( ) cos cos( )

A t i B t j

v t A t i B t j

a t A t i B t j
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Now: cos t = x/A,  and cos (t + ) = y/B

or, cos t cos- sintsin = y/B

Using expression for x/A 

y/B= (x/A) cos- sint sin

 sint =[(x/A) cos - y/B] sin

Since    cos2 t + sin2 t =1 

(sin)-2[(x/A)2+ (y/B)2-2 (x/A)(y/B) cos]=1

(equation of an ellipse)
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Harmonic motion in two

dimensions (a plane)

y

x

2A

O
2B

r

v

P
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2.7  Velocity and Acceleration of a Point in 

a Rigid Body

rigid body rotating at 

the rate of     relative     

to XYZ.

A, P are two points on the same rigid body



X

vP

O
A

Y

Z

vA

P
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 - position of P as

measured from A.

Now, 

So, 

(since |  |= const.,  changes only in orientation)

• velocity of P .r.t.

Point A, as viewed in

the reference frame XYZ.

X

vP

O
A

Y

Z

vA

P





P Av v d dt 

OP OAr r  

P Av v     

/P A P Av v v    
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Now, consider the acceleration:

or

This is the acceleration of point P in a rigid 

body as viewed .r.t the frame XYZ; the point 

P is in the rigid body which is rotating at 

angular velocity      relative to XYZ, and this 

rotation rate is changing at the rate



 .

( )P P A

A

a dv dt d v dt

a

 

   

   

    

( )P Aa a          
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2.8  Vector Derivative in Rotating Systems

• O - a fixed point in 

the body

• - triad of 

unit vectors in the 

body

• - angular velocity 

of the body 

• Consider now an 

arbitrary vector

e e e1 2 3, ,



A

A A e A e A e  1 1 2 2 3 3

X

O

A

Y

Z

e1



e3
e2

It can be represented as 
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There are

two observers -

(depends on the observer)

Let                          rate of change .r.t.  XYZ

Then

- the rate of change w.r.t. the body in which      are fixed

stationary with XYZ

moving with the body ( ).

RST
XYZcan be with respect to XYZ ( d dt)

Then,
can be with respect to the moving body ( d dt)

Ad A

dt A


 


XYZA dA dt

1 1 2 2 3 3 1 1 2 2 3 3A A e A e A e A e A e A e     

( )rA ie
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Now

In a more general sense, let A and B be two 

bodies;            - angular velocity of A as 

viewed (by an observer) from B;                           

(Note                             - angular velocity of B 

as viewed from A). Then

A B/

 B A A B/ / 

1 1 2 2 3 3

1 1 2 2 3 3

; ;

( )r

e e e e e e

A e A e A e A

A A A

  





     

    

   

/( ) ( )A B B AA A A  
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2.9  Motion of a Particle in a Moving 

Coordinate System

• XYZ - fixed reference 

frame (really, a given 

frame)

• xyz - a frame denoting 

a moving body with 

angular velocity       

relative to XYZ. 



X

O

P

Y

Z

x

O‟





y

zrOP

R
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- origin of 
coordinate system in 
xyz

- position of

- position of point 

P (moving object)

- position of P .r.t. 

Then, the position of 

the particle is

O

R O

OPr

ρ O

OPr =R+ρ
X

O

P

Y

Z

x

O‟





y

zrOP

R
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Then, the velocity with respect to the XYZ is

but 

(rate of change of                  

the rotating frame (the 

rotating body))

 - velocity of P

XYZ.

- velocity of P                  in xyz.

- velocity of                   XYZ.

- velocity of a point      in the

rotating body which is coincident with P at 
this instant.  

OP Pr v R    ( )r     

. . .r t 

( )P rv R       . . .r t

( )r . . .r t P
R O r t. . .

R    P
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- acceleration in XYZ frame

coriolis centripetal

This is the most general expression for accel

OP P Pr dv dt a 

or [ ( ) ]

( )

Now ( ) ( ) ( )

and ( )

( ) 2 ( ) ( )

P r

r

r r r

r

P r r

a d R dt

R d dt d dt

d dt

d dt

a R
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Ex:  Motion of a Particle Relative to Rotating

Earth
We now consider one of the application of the 

general formulation for acceleration when a rotating 

reference frame is quite natural. Here, an object is 

moving and its motion is observed by someone 

moving with earth. Assumptions:

• Earth rotates about the sun.

• The acceleration of center of earth is, however, 

relatively small compared to gravity and 

acceleration on the earth‟s surface due to 

earth‟s spin, especially away from poles.
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Z

X

m
R



Y



z

y

x

O



O‟ 





meridian circle

parallel

O‟-location of observer

on earth‟s surface

O-center
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Basic definitions:

x - local south (tangent to the meridian circle)

y - local east (tangent to a parallel)

 - longitude (defines location of a meridian 

plane relative to plane through Greenwich)

 - latitude (defines location of a parallel 

relative to the Equator)

z - local vertical

XYZ - Fixed Frame located at O - center of

the earth
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More definitions:

OXY - Equatorial plane

OZ - axis of earth‟s rotation

xyz - attached to the surface of earth at

(at latitude -  ;    longitude - )

- angular velocity of the moving frame

=   

Note:         is constant 

(for a vector to be constant, both its 

magnitude and the direction must remain 

constant w.r.t. the reference frame)

O


  cos sin i k

   0
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Now, we use the notation already established 
to define the kinematics:

- position vector of       to O.
- position of the mass particle relative to 

(the point on earth‟s surface)

=

R

O

O


xi yj zk 

( ) ( )

( )

( cos sin ) ( )

[ sin ( cos sin ) cos ]

r rel to xyz
d dt x i y j z k

x i y j z k

i k xi y j zk

y i z x j y k
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(centripetal acceleration)

(coriolis acceleration)

2( ) [ sin ( cos sin )

cos ( cos sin ) ]

z x i

y j z x k

     

  

    

  

2 ( ) 2( cos sin ) ( )

2 [ sin ( cos sin ) cos ]

r i k xi y j zk

y i z x j y k
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Finally, 

Now:

0  

2 2

( ) 2 ( ) ( )

(constant w.r.t. xyz)

( )

( )

( cos sin cos )

P r r

rel to XYZ

a R

R Rk

R dR dt R

R R

R i k
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Note: 7.2910-5 rad/sec

• close to earth‟s surface 

2 2

2

( cos sin cos ) 0

2 [ sin ( cos sin )

cos ]

[ sin ( cos sin )

cos ( cos sin ) ]

Pa R i k

y i z x j

y k

z x i y j

z x k

x i y j z k

  

  



  

  

    

    



   

 

  

2 2 , .x R etc 
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(for motions near earth‟s surface).

• Since                                       terms are also 

neglected in study of most motions close to 

earth‟s surface.  Note that this depends also 

on the latitude  of the point O‟.

5 27.29 10 ,  

2 2( cos sin cos )

2 [ sin ( cos sin )

cos ]

Pa R i k

y i z x j

y k

x i y j z k
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Ex:  Motion of a Particle in Free Fall Near

Earth‟s Surface

z (local north)

y (local east)
O‟

O

mg

m

Uniform gravitational

field     W=-mgk

- Consider a particle 

moving close to the 

earth‟s surfare;

- We will write the

equations of motion 

using the co-

ordinate system 

attached to the 

surface of moving 

earth;
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Newton‟s 2nd Law:

(in an inertial frame)

Neglecting        terms and air drag 

Note: terms also need to be always 

neglected in calculations to follow.

F maP

2

P Pmgk ma gk a    

: 2 sin 0 (1)

: 2 ( sin cos ) 0 (2)

: 2 cos 0 (3)

i x y

j y x z

k z y g



 



  

   

   

2
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Initial conditions are:

x(0) =0, y(0) =0, z(0) =h; ( ) ( ) ( )x y z0 0 0 0  

2 2

3

(1) 2 sin tan 0 (4)

(3) 2 cos tan 0 (5)

(4), (5) (2)

2 (2 sin 2 cos cos ) 0

2 cos 0

cos / 3 (6)

x y cons t

z y gt cons t

in

y y y gt

or y gt

y gt
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(4), (6)

(5), (6)  

Time to reach earth‟s surface:

Coordinate of the landing point:

2 3(2 3) sin cos 0

( ) 0 (7)

x gt

x t

   



2 3 2

2

(2 3) cos

( ) / 2 (8)

z gt gt gt

z t h gt

    

  

0 2 /z t h g  

0, (2 / 3) 2 / cos , 0x y h h g z   
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Schematics

z (local north)

y (local east)
O‟

O

(2 / 3) 2 / cosy h h g  

h
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2.10  Plane Motion (motion of a 3-D rigid 

body in a plane)

• There exists a plane such that every point 

has velocity and acceleration parallel to this 

one fixed plane.

lamina of motion

All planes are moving 

parallel to the the plane 

colored green. This 

lamina contains the 

centroid of the rigid 

body.
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B

A

AB

vA

vA

vB
Consider motion in the

plane called the „lamina 

of motion‟.

Let     - angular velocity 

of the body (same for 

every plane in the body 

and       to the lamina of 

motion).



R

Let , velocitiesof Aand B, twopoints

in thelamina.Then 

A B

A A AB

v v

v v  



  

This relates velocities of two points on the same 

rigid body.
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Question: Does there exist a point such that its 

velocity is zero, even if only instantaneously ?

• Suppose that C be such a point: vC=0.

Then, considering points A and B, velocities are:

Using these, we can construct and find the point 

C, as well as the angular velocity , given the     

velocities                    for points A and B. 


andA Bv v

and

(Assuming that 0)

r

A C CA A CA

r

B C CB B CB

C

v v v

v v v

v
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C - instantaneous center (of zero velocity)

 vB

B

A

CA

vA

C Consider the construction on

the left. Points A and B are

given with their velocities.

Then, one can follow the

construction and note that
and

(Assuming that 0)

A CA

B CB

C

v

v

v

 

 

 

 



/ /A CA B CBv v   
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Ex: Rolling Motion:

• Two physical points                   one belongs to 

the wheel, the other to the ground on which 

it is rolling 

• Ground fixed 

C CW G, ;


Consider a wheel moving

on the fixed ground.

O‟ - center of wheel

Let:  vO‟ - velocity of O‟

 - angular velocity

of the wheel

They are not independent

in rolling.

i

j

O‟

C

r

vO

‟CW

CG

W GC Cv v

0 0.
G WC Cv v  
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• wheel is one rigid body                           is

the instant center (of zero velocity). 

• Then

• Let      = angular acceleration of the wheel.

0
GC Wv C 



' '

' '

' '

( )

(this is always valid)

differentiating with respect to time

O C CO

O O

O O

v v r rj

r i v i v r

v a r

 

 



     

   



 

' 'orO Oa r a r i r i     
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Now, consider acceleration of the wheel center.  

The relation is:

(it is directed towards the wheel center).

' ' '

'

'

2

( )

;

( )

( )

O C CO CO

CO

CO

C

C

a a

rj

k rj r i

r i a r i rj

a k r i rj
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Reading assignment:

Examples 2.3, 2.4-2.5, 2.7

Example 2.6

Consider a wheel of radius      

,  rolling inside the 

fixed track of radius    .  

The arm         rotates

at a constant angular

velocity  about the

fixed point O’.

r2
r1

'OO
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Find: The velocity vP

and acceleration aP of a

point P on the wheel,

specified by angle 

w.r.t. line OO’ . 

First Method:

O - origin of the fixed

frame; Arm is the moving

frame; O‟- origin of the

moving coordinate system.
en

et(et, en, eb) - a unit vector triad 
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where

'( ) ( )P r O rv R v            

''; O POR v r 

' 1 2

1 2 1 2

1 2 1 2 '

2

2

Now Re ( ) e

So ( ) ( ) e

( ) e ( ) e

Also (cos e sin e )

( ) ( sin e cos e )

OO n n

n n

b n t O

n t

r n t

R r r r

R r r e r r

r r e r r v

r

r
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2

2 2

1 2 2

2

1 2 2 2

1 2 1 2

(cos e sin e )

cos e sin e

( ) ( sin e cos e )

( cos e sin e )

: 0,

and when =

( )

Rolling Constraint

always vali

e e 0

o / )dr (

b n t

t n

P t n t

t n

C

C t t t

e r

r r

v r r e r

r

v

P C

v r r e r r

r r r r

    

   

   

  

 

  

   

   

  

     

  





     

  

2r
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1 2 1 2

1 2

1 2

1 2

2

1 2 1 2

So, [( ) cos cos ]

[ sin sin ]

or ( ) {[1 cos ] sin }

Also, /

Acceleration:

0

( ) ( ) 2 ( )

( ) ( ) ( )

0

P t

n

P t n

P r r

b t n

v r r r r e

r r e

v r r e e

r r

a R

R r r e e r r e
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2 2

2

2

2

2

2 2

1 2

1

2

1

Consider theother terms :

( ) [ cos sin ]

( cos sin )

( ) ( sin cos )

( cos sin )

( cos sin ) /

2 ( ) 2 [ sin cos ]

2 (cos

b t n

n t

r n t

n t

n t

r b n t

e r e r e

r e e

r e e

r e e

r e e r

e r e e

r e

       

  

   

    

  

     

 

     

  

  

  

  

    

 sin )n te
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Thus, the acceleration is

2 2

1 2 2

2 2

1 2

2

1

2 2 2

1 2 1 2 2

2 2

1 2 2

( ) ( cos sin )

( cos sin ) /

2 (cos sin )

[( ) ( ) cos / ]

[ ( ) sin / ]

P n n t

n t

n t

P

t

a r r e r e e

r e e r

r e e

a r r r r r

r r r e
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Second Method:

Let wheel serve as the

moving frame;     - origin

of the moving coordinate

system, attached to

the wheel.

Then, 

O

en

et

( )

( ) ( )

0

( )

b

b b

b b

b

e

e e

e e

e
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'

1 2

2

2

2

1 2 2

( :O'is on thearm)

( )

(cos sin )

( ) 0 (moving frameattached to the wheel)

( ) (cos sin )

( ) (sin cos )

( ) ( ) (sin cos

OO n

b n t

n t

r

b n t

n t

P t n

R r Re Note

R e Re Re R r r

r e e

e r e e

r e e

v r r e r e

 

  



     

   

   

  

    

 



    

  

     

Rol

)

Now, theconstraint is

0

ling

t

C

e

v and P C when



    



84

Imposing constraint vC=0 

1 2

1 2

1 2

2

1 2

/ 0 (sin 0)

( ){1 cos }

( ) sin

( ) =0; R= ( )

Acceleration

.

. .

:

P t

n

r n

r r ce

v r r e

r r e

r r e

etc
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Rate of Change of a vector in a Rotating 

Reference Frame

• Let A and B be two reference frames, B moves 

relative to A

• {E1,E2,E3} – orthonormal

basis in A

• {e1,e2,e3} – orthonormal

basis in B

We can express:

b=b1e1+b2e2+b3e3

in the basis {e1,e2,e3} E1

O

P

E2

E3

e1

e2

e3
b

Reference

frame A

Reference

frame B


