CHAPTER 2 KINEMATICS OF A PARTICLE

Kinematics: It is the study of the geometry of motion of particles, rigid bodies, etc., disregarding the forces associated with these motions.

Kinematics of a particle \rightarrow motion of a point in space

- Interest is on defining quantities such as position, velocity, and acceleration.
- Need to specify a reference frame (and a coordinate system in it to actually write the vector expressions).
- Velocity and acceleration depend on the choice of the reference frame.
- Only when we go to laws of motion, the reference frame needs to be the inertial frame.
- From the point of view of kinematics, no reference frame is more fundamental or absolute.

2.1 Position, velocity, acceleration

$\underline{\mathbf{r}}_{\mathrm{OP}}$ - position vector (specifies position, given the choice of the origin 0).

Clearly, $\underline{\mathbf{r}}_{\mathrm{OP}}$ changes with time $\rightarrow \underline{\mathbf{r}}_{\mathrm{OP}}(\mathbf{t})$

velocity vector:

$$
\begin{gathered}
{ }^{\Re} \underline{v}_{P}=\frac{d}{d t} \underline{r}_{O P}(t)=\lim _{\Delta t \rightarrow 0} \frac{\Delta \underline{r}_{O P}}{\Delta t} . \\
\text { acceleration vector: } \\
\Re_{P}=\frac{d}{d t} \underline{v}_{P}(t)=\frac{d^{2}}{d t^{2}} \underline{r}_{O P}(t) .
\end{gathered}
$$

- speed: $\quad v_{P} \equiv\left|\underline{v}_{P}\right|=\sqrt{\underline{v}_{P} \bullet \underline{v}_{P}}$
- magnitude of acceleration:

$$
a_{P} \equiv\left|\underline{a}_{P}\right|=\sqrt{\underline{a}_{P} \bullet \underline{a}_{P}}
$$

Important: the time derivatives or changes in time have been considered relative to (or with respect to) a reference frame.

Description in various coordinate systems

(slightly different from the text)

- Cartesian coordinates, cylindrical coordinates etc.

Let $\underline{i}, \underline{j}, \underline{\mathrm{k}}$ be the unit vectors

Cartesian coordinate system: The reference frame is \mathfrak{R} - it is fixed.
 $\underline{\mathrm{i}} \times \underline{\mathrm{j}}=\underline{\mathrm{k}} \quad, \quad \underline{\mathrm{j}} \times \underline{\mathrm{k}}=\underline{\mathrm{i}} \quad, \quad \underline{\mathrm{k}} \times \underline{\mathrm{i}}=\underline{\mathrm{j}} \quad$ etc. $\rightarrow \underline{i}, \underline{j}, \underline{k}$ are an orthogonal set. Then, position of P is: $\underline{\mathbf{r}}_{\mathrm{OP}}=x(\mathbf{t}) \underline{\underline{i}}+y(\mathbf{t}) \mathbf{i}+z(\mathbf{t}) \underline{\mathbf{k}}$

The time derivative of position is velocity:

$$
\begin{aligned}
\underline{v}_{P}=\frac{d \underline{r}_{O P}}{d t} & =\frac{d x(t)}{d t} \underline{i}+\frac{d y(t)}{d t} \underline{j}+\frac{d z(t)}{d t} \underline{k} \\
& +x(t) \frac{d \underline{i}}{d t}+y(t) \frac{d \underline{j}}{d t}+z(t) \frac{d \underline{k}}{d t}
\end{aligned}
$$

If considering rate of change in a frame in
which $\underline{\underline{i}}, \underline{\mathrm{j}}, \underline{\mathrm{k}}$ are fixed, $\frac{{ }^{\Re} d \underline{\underline{i}}}{d t}=\frac{{ }^{\Re} d \underline{\underline{j}}}{d t}=\frac{{ }^{\Re} d \underline{\underline{k}}}{d t}=0$ $\rightarrow \underline{\underline{v}}_{P}=\frac{d x(t)}{d t} \underline{i}+\frac{d y(t)}{d t} \underline{j}+\frac{d z(t)}{d t} \underline{k}$ velocity vector Similarily,

$$
{ }^{\Re} \underline{a}_{P}=\ddot{x}(t) \underline{i}+\ddot{y}(t) \underline{j}+\ddot{z}(t) \underline{k}
$$

Cylindrical Coordinates:

\mathbf{e}_{r} - unit vector in xy plane in radial direction.

$\underline{\mathbf{k}}$ - unit vector in z . Then, by definition
$r=\left(x^{2}+y^{2}\right)^{1 / 2} ; \quad \phi=\tan ^{-1}(y / x)$.

The position is: $\underline{\mathbf{r}}_{\mathrm{OP}}=x(\mathbf{t}) \underline{\mathbf{i}}+y(\mathbf{t}) \mathbf{j}+z(\mathbf{t}) \underline{\mathbf{k}}$
Also, $\underline{\mathbf{r}}_{\mathrm{OP}}=r(\phi) \underline{\mathrm{e}}_{\mathrm{r}}+z(\mathbf{t}) \underline{\mathbf{k}}$ and $\underline{\mathbf{r}}_{\mathrm{OP}}=r(\phi) \cos \phi \underline{\mathrm{i}}+r(\phi) \sin \phi \underline{\mathrm{j}}+z(\mathbf{t}) \underline{\mathbf{k}}$
$\rightarrow \underline{e}_{r}=\cos \phi \underline{i}+\sin \phi \underline{j} \equiv \frac{\partial \underline{r}}{\partial r} /\left|\frac{\partial \underline{r}}{\partial r}\right|$
Also,

$$
\underline{e}_{\phi} \equiv \frac{\partial \underline{r}}{\partial \phi} /\left|\frac{\partial \underline{r}}{\partial \phi}\right| \text { but } \frac{\partial \underline{r}}{\partial \phi}=r(-\sin \phi \underline{i}+\cos \phi \underline{j})
$$

and $\left|\frac{\partial \underline{r}}{\partial \phi}\right|=r \rightarrow \underline{e}_{\phi}=-\sin \phi \underline{i}+\cos \phi \underline{j}$

- Imp. to Note: $\underline{e}_{\mathrm{r}}$ and $\underline{\mathrm{e}}_{\phi}$ change with position (ϕ).
- position: $\quad \underline{\mathbf{r}}_{\mathrm{OP}}=r(\phi) \underline{\mathbf{e}}_{\mathrm{r}}+z(\mathbf{t}) \underline{\mathbf{k}}$ or $\quad \underline{\mathbf{r}}_{\mathrm{OP}}=r(\phi) \cos \phi \underline{\mathbf{i}}+r(\phi) \sin \phi \underline{\mathbf{j}}+z(\mathbf{t}) \underline{\mathbf{k}}$
- velocity:

$$
\underline{v}_{P}=d \underline{r}_{O P} / d t=\dot{r} \underline{e}_{r}+r d \underline{e}_{r} / d t+\dot{z} \underline{k}+z d \underline{k} / d t
$$

z- direction($\underline{\mathrm{k}})$ fixed $\rightarrow d \underline{k} / d t=0$
Thus

$$
d \underline{e}_{r} / d t=\left(d \underline{e}_{r} / d \phi\right)(d \phi / d t)=\left(d \underline{e}_{r} / d \phi\right) \dot{\phi}=\underline{e}_{\phi} \dot{\phi}
$$

or

$$
\underline{v}_{P}=\dot{r} \underline{e}_{r}+r \dot{\phi} \underline{e}_{\phi}+\dot{z} \underline{k}
$$

$=$ radial comp+transverse comp+axial comp
-acceleration:

$$
\begin{aligned}
\underline{a}_{P} & =\frac{d \underline{v}_{P}}{d t}=\frac{d}{d t}\left(\dot{r} \underline{e}_{r}+r \dot{\phi} \underline{e}_{\phi}+\dot{z} \underline{k}\right) \\
& =\ddot{r} \underline{e}_{r}+\dot{r} \underline{\dot{e}}_{r}+\dot{r} \dot{\phi} \underline{e}_{\phi}+r \ddot{\phi} \underline{e}_{\phi}+r \dot{\phi} \underline{\dot{e}}_{\phi}+\ddot{z} \underline{k}
\end{aligned}
$$

Now, $\quad \underline{\dot{e}}_{r}=\dot{\phi} \underline{e}_{\phi} ; \quad \underline{\dot{e}}_{\phi}=-\dot{\phi} \underline{e}_{r}$
$\rightarrow \quad \underline{a}_{P}=\left(\ddot{r}-r \dot{\phi}^{2}\right) \underline{e}_{r}+(2 \dot{r} \dot{\phi}+r \ddot{\phi}) \underline{e}_{\phi}+\ddot{z} \underline{k}$

=radial comp+transverse comp+axial comp

Spherical coordinates: reading suggested later

Tangential and Normal Components:

 (intrinsic description)
s - scalar parameter defining distance along the path from some landmark O^{\prime}.

- called the path variable.

Note: $s \equiv s(t)$ (it depends on time). Suppose that the path is fixed, a given highway for example. Then, $\underline{r}_{O P}=\underline{r}_{O P}(\mathbf{s})$ is known. Different vehicles travel at different rates - speeds, changes in speeds. Properties of the highway, a planar or space curve are distinct from the motion $\mathrm{s}(\mathrm{t})$.

Ex: automobile traveling along a circular race track.

- O and O^{\prime} are distinct. Position is from O, s is being measured from O^{\prime}.

Now:
$\underline{r}_{O P}=\underline{r}_{O P}(s) ; \quad s=s(t)$
Then

$\underline{v}_{P}=\frac{d \underline{r}_{O P}}{d t}=\frac{d \underline{r}_{O P}}{d s} \frac{d s}{d t}=\frac{d s}{d t} \lim _{\Delta s \rightarrow 0} \frac{\Delta \underline{r}_{P}}{\Delta s}$

Consider

$$
\lim _{\Delta s \rightarrow 0} \frac{\Delta \underline{r}_{P}}{\Delta s}=\lim \frac{\Delta \underline{r}_{P}}{\left|\Delta \underline{r}_{P}\right|} \cdot \lim \frac{\left|\Delta \underline{r}_{P}\right|}{\Delta s}=1 \cdot \underline{e}_{t}(s)=\underline{e}_{t}(s)
$$

- $\underline{\mathrm{e}}_{\mathrm{t}}$ depends in orientation on s (location),
its magnitude is always one.
$\rightarrow \quad \underline{v}_{P}=\dot{s} \underline{\underline{e}}_{t}(s) \quad$ velocity vector
- velocity is always tangent to path with magnitude $($ speed $)=v_{P}=\left|\dot{\dot{e}} \underline{e}_{t}(s)\right|=|\dot{s}|$
To find expression for acceleration:

$$
\begin{aligned}
\underline{a}_{P} & =\frac{d}{d t}\left(\dot{s} \underline{e}_{t}(s)\right)=\ddot{s}_{t}(s)+\dot{s} \underline{\dot{e}}_{t}(s) \\
& =\ddot{s} \underline{e}_{t}(s)+\dot{s} \frac{d}{d s}\left(\underline{e}_{t}(s)\right) \frac{d s}{d t}=\ddot{s} \underline{e}_{t}(s)+\dot{s}^{2} \frac{d \underline{e}_{t}(s)}{d s}
\end{aligned}
$$

To find $\frac{\mathrm{d} \underline{\mathrm{e}}_{\mathrm{t}}}{\mathrm{ds}}$, consider $\underline{e}_{t}(s) \cdot \underline{e}_{t}(s)=1$
(unit vector at every s)
$\frac{d}{d s}\left\{\underline{e}_{t}(s) \cdot \underline{e}_{t}(s)\right\}=0 \rightarrow 2 \underline{e}_{t}(s) \cdot \frac{d \underline{e}_{t}(s)}{d s}=0$
$\rightarrow \underline{e}_{t}(s)$ is \perp^{r} to $\frac{d \underline{e}_{t}(s)}{d s}$
Let: $\quad \frac{d \underline{e}_{t}(s)}{d s}=\kappa \underline{e}_{n} \equiv \frac{1}{\rho} \underline{e}_{n}(s)$
where

$$
\underline{e}_{n}(s)=\frac{d \underline{e}_{t}(s)}{d s} /\left|\frac{d \underline{e}_{t}(s)}{d s}\right| \text { is a normal vector }
$$

κ - curvature of the path at the location ' s '.
ρ - radius of curvature at \mathbf{P} (at location ' s ').
$\rightarrow \underline{a}_{P}=\ddot{s}_{\underline{e}}^{t}(s)+\frac{\dot{s}^{2}}{\rho} \underline{e}_{n}(s)=\dot{v}_{P} \underline{e}_{t}(s)+\frac{v_{P}{ }^{2}}{\rho} \underline{e}_{n}$

$$
\text { or } \quad \underline{a}_{P}=a_{t} \underline{e}_{t}(s)+a_{n} \underline{e}_{n}(s)
$$

Now define: $\underline{e}_{b} \equiv \underline{e}_{t}(s) \times \underline{e}_{n}(s)$ binormal vector Note that the vectors $\underline{e}_{t}, \underline{e}_{n}$, and \underline{e}_{b} satisfy $\underline{e}_{t} \cdot \underline{e}_{t}=\underline{e}_{n} \cdot \underline{e}_{n}=\underline{e}_{b} \cdot \underline{e}_{b}=1 ;$ $\underline{e}_{t} \cdot \underline{e}_{n}=\underline{e}_{t} \cdot \underline{e}_{b}=\underline{e}_{n} \cdot \underline{e}_{b}=0$.

Rate of change of unit vectors along the path:

One can show that:
$\begin{aligned} & \frac{d \underline{e}_{t}}{d s}=\frac{\underline{e}_{n}}{\rho} \equiv K \underline{e}_{n} \\ & \frac{d \underline{e}_{b}}{d s}=-\frac{\underline{e}_{n}}{\tau} \\ & \frac{d \underline{e}_{n}}{d s}=-\frac{\underline{e}_{t}}{\rho}+\frac{\underline{e}_{b}}{\tau} \\ & \text { Frenet's formulas (in differential geometry) }\end{aligned}$

Ex (2): Suppose we want to show: $\frac{d \underline{e}_{b}}{d s}=-\frac{\underline{e}_{n}}{\tau}$
Consider $\frac{d}{d s}\left(\underline{e}_{t} \cdot \underline{e}_{b}\right)=0 \rightarrow \frac{d \underline{e}_{t}}{d s} \cdot \underline{e}_{b}+\underline{e}_{t} \cdot \frac{d \underline{e}_{b}}{d s}=0$
Now $\frac{d \underline{e}_{t}}{d s}=\frac{\underline{e}_{n}}{\rho} \rightarrow \underline{e}_{t} \cdot \frac{d \underline{e}_{b}}{d s}=-\frac{\underline{e}_{n}}{\rho} \cdot \underline{e}_{b}=0$

$$
\rightarrow \underline{e}_{t} \perp^{r} \frac{d \underline{e}_{b}}{d s}
$$

Also $\frac{d}{d s}\left(\underline{e}_{b} \cdot \underline{e}_{b}=1\right) \rightarrow \frac{d \underline{e}_{b}}{d s} \cdot \underline{e}_{b}=0$
Thus $\rightarrow \underline{e}_{b} \perp^{r} \frac{d \underline{e}_{b}}{d s}$
$\rightarrow \quad \frac{d \underline{e}_{b}}{d s}$ is only along \underline{e}_{n}
Let $\frac{d \underline{e}_{b}}{d s}=-\frac{\underline{e}_{n}}{\tau} \equiv-\tau_{w} \underline{e}_{n}$
$\tau-$ torsion,$\frac{1}{\tau}=\tau_{w}-$ twist
Torsion and twist are like radius of curvature and curvature.

Ex 3: A rocket lifts-off straight up. A radar station is located L distance away. At height H , the rocket has speed v, and rate of change of speed \dot{v}.

Find: $\mathbf{R}, \dot{\mathrm{R}}, \ddot{\mathrm{R}}, \dot{\phi}, \ddot{\phi}$
the variables measured

by the tracking station.

We start with velocity:
$\underline{v}_{P}=v \underline{e}_{t}=\dot{R} \underline{e}_{r}+R \dot{\phi}_{\phi} \underline{e}_{\phi}$

$$
\underline{e}_{t}=\cos \phi \underline{e}_{\phi}+\sin \phi \underline{e}_{r}
$$

$$
v \underline{v}_{t}=v\left(\cos \phi \underline{e}_{\phi}+\sin \phi \underline{e}_{r}\right)
$$

$$
=\dot{R} \underline{e}_{r}+R \dot{R} \dot{\phi}_{\phi}
$$

Comparing on two sides:
$\underline{e}_{\phi}: v \cos \phi=R \dot{\phi} \rightarrow \dot{\phi}=v \cos \phi / R$

$\underline{e}_{r}: v \sin \phi=\dot{R} ; \quad$ Also, $R=L / \cos \phi$
$\rightarrow \quad v \sin \phi=\dot{R} \quad \dot{\phi}=v \cos ^{2} \phi / L$

Similarly:

$$
\begin{aligned}
\underline{a}_{P} & =\dot{v} \underline{e}_{t}+\frac{v^{2}}{\rho} \underline{e}_{n}=\left(\ddot{R}-R \dot{\phi}^{2}\right) \underline{e}_{r}+(R \ddot{\phi}+2 \dot{R} \dot{\phi}) \underline{e}_{\phi} \\
& =\dot{v}\left(\sin \phi \underline{e}_{r}+\cos \phi \underline{e}_{\phi}\right)
\end{aligned}
$$

comparing on the two sides:
$\underline{e}_{r}: \dot{v} \sin \phi=\ddot{R}-R \dot{\phi}^{2}$
or $\ddot{R}=\dot{v} \sin \phi+v^{2} \cos ^{3} \phi / L$
$\underline{e}_{\phi}: \quad \dot{v} \cos \phi=R \ddot{\phi}+2 \dot{R} \dot{\phi}$
or $\quad \ddot{\phi}=\cos \phi\left[\dot{v} \cos \phi-2 v \sin \phi \cos ^{2} \phi v / L\right] / L$

Ex 4: A block C slides along the horizontal rod, while a pendulum attached to the block can swing in the vertical plane

Find: The acceleration of the pendulum mass D.

$$
\begin{aligned}
& \underline{\underline{\dot{r}}}_{D}=[\dot{x}(t)+l \dot{\theta} \cos \theta] \underline{i}-l \dot{\theta} \sin \theta \underline{j} \\
& \underline{\underline{i}}_{D}=\left[\ddot{x}(t)+l \ddot{\theta} \cos \theta-l \dot{\theta}^{2} \sin \theta\right] \underline{i}
\end{aligned}
$$

$$
-l\left[\ddot{\theta} \sin \theta+\dot{\theta}^{2} \cos \theta\right] \underline{j}
$$

Ex 5: A slider S is constrained to follow the fixed surface defined by the curve $B C D$: $r=a /(1+\theta)$; r is in meters, θ is in radians. Find: $\underline{\mathbf{v}}_{\mathrm{S}}, \underline{\mathbf{a}}_{\mathbf{S}}$

Consider the solution using the cylindrical

 coordinate system: the unit vectors are \underline{e}_{r} and \underline{e}_{θ} The position is: $\underline{r}_{S}=r \underline{e}_{r}$The velocity is $\underline{v}_{S}=\dot{r} \underline{e}_{r}+r \dot{\hat{\theta}} \underline{e}_{\theta}$;
Now $r=a /(1+\theta)$,
$\theta=c \sin (\omega t), \dot{\theta}=-c \omega \cos (\omega t)$
$\dot{r}=\frac{d r}{d \theta} \dot{\theta} ; \frac{d r}{d \theta}=-\frac{a}{(1+\theta)^{2}}$

$$
\underline{v}_{S}=-\frac{a \dot{\theta}}{(1+\theta)^{2}} \underline{e}_{r}+\frac{a \dot{\theta}}{(1+\theta)} \underline{e}_{\theta}
$$

Now we consider the acceleration of the block:

The expression is:

$\underline{a}_{S}=\left(\ddot{r}-r \dot{\theta}^{2}\right) \underline{e}_{r}+(r \ddot{\theta}+2 \dot{r} \dot{\theta}) \underline{e}_{\theta}$
The various terms in this expression are:
$\dot{\theta}=-c \omega \cos (\omega t) ; \ddot{\theta}=-c \omega^{2} \sin (\omega t)$
$\ddot{r}=\frac{d}{d t} \dot{r}=\frac{d}{d t}\left(-\frac{a \dot{\theta}}{(1+\theta)^{2}}\right)=-\frac{a \ddot{\theta}}{(1+\theta)^{2}}+\frac{2 a \dot{\theta} \dot{\theta}}{(1+\theta)^{3}}$

2.2 ANGULAR VELOCITY: It defines the

 rate of change of orientation of a rigid body or, a coordinate frame with respect to another.

Consider displacement in time $\Delta \mathrm{t}$.
(displ. + rot.)
Shown is an infinitesimal
displacement of a rigid body
$\underline{\omega} \equiv \lim _{\Delta t \rightarrow 0} \frac{\Delta \underline{\theta}}{\Delta t}$ defines the angular velocity $\underline{\omega}$

- The angular velocity does not depend on the base point A^{\prime}. Rather, it is a property for the whole body.
- The angular velocity vector will usually change both its magnitude $\underline{\omega}$ and direction $\underline{e}_{\omega}=\underline{\omega} /|\underline{\omega}|$ continuously with time.
2.3 Rigid Body Motion about a Fixed Point:
 The rigid body rotates about point O (fixed base point). P - a point fixed in the body.
$\underline{\omega}$ - angular velocity of the
body relative to $X Y Z$ axes.
Direction of $\underline{\omega}$ - instant. axis of
rotation. Speed of $\mathrm{P} \dot{s}=\omega r \sin \theta$.
\rightarrow velocity $\underline{v}=\underline{\omega} \times \underline{r}$ (along tangent to circle)

The acceleration is now calculated, using the definition that it is the time-derivative of velocity: $\underline{a}=d(\underline{v}) / d t=d(\underline{\omega} \times \underline{r}) / d t$

$$
\underline{a}=\underline{\dot{\omega}} \times \underline{r}+\underline{\omega} \times \underline{\dot{\underline{r}}}
$$

or $\underline{\underline{a}}=\underline{\underline{\dot{\omega}}} \times \underline{r}+\underline{\omega} \times(\underline{\omega} \times \underline{r})$
(Recall: these rates of change are ω.r.t.XYZ).

- $(\underline{\omega} \times(\underline{\omega} \times \underline{r}))$ is directed towards the instantan axis from P - centripetal acceleration.
- $\underline{\dot{\omega}} \times \underline{r}-$ tangential acceleration (not really tangent to the path of \mathbf{P}).

2.4 The Derivative of a Unit Vector:

Let $\underline{e}_{1}, \underline{e}_{2}, \underline{e}_{3}$ be an independent set of unit vectors attached to a rigid body rotating with angular velocity

$\underline{\omega}$. The body rotates relative to the reference frame XYZ. Thus, for the unit vectors:

$$
\underline{\dot{e}}_{1}=\underline{\omega} \times \underline{e}_{1}, \quad \underline{\dot{e}}_{2}=\underline{\omega} \times \underline{e}_{2}, \quad \underline{\dot{e}}_{3}=\underline{\omega} \times \underline{e}_{3}
$$

Assume that the set $\left(\underline{\mathrm{e}}_{1}, \underline{\mathrm{e}}_{2}, \underline{\mathrm{e}}_{3}\right)$ is - orthonormal Thus, $\underline{e}_{1} \perp^{r} \underline{e}_{2} ; \underline{e}_{1} \perp^{r} \underline{e}_{3}$ and $\underline{e}_{2} \perp^{r} \underline{e}_{3}$ This can also be stated as: $\underline{e}_{1} \times \underline{e}_{2}=\underline{e}_{3}$, etc. Let $\underline{\omega}=\omega_{1} \underline{e}_{1}+\omega_{2} \underline{e}_{2}+\omega_{3} \underline{e}_{3}$
(expressed in moving basis)

$$
\begin{array}{r}
\rightarrow \dot{\underline{e}}_{1}=\left(\omega_{1} \underline{e}_{1}+\omega_{2} \underline{e}_{2}+\omega_{3} \underline{e}_{3}\right) \times \underline{e}_{1}=\omega_{3} \underline{e}_{2}-\omega_{2} \underline{e}_{3} \\
\dot{\underline{e}}_{2}=\left(\omega_{1} \underline{e}_{1}+\omega_{2} \underline{e}_{2}+\omega_{3} \underline{e}_{3}\right) \times \underline{e}_{2}=\omega_{1} \underline{e}_{3}-\omega_{3} \underline{e}_{1} \\
\dot{\underline{e}}_{3}=\left(\omega_{1} \underline{e}_{1}+\omega_{2} \underline{e}_{2}+\omega_{3} \underline{e}_{3}\right) \times \underline{e}_{3}=\omega_{2} \underline{e}_{1}-\omega_{1} \underline{e}_{2}
\end{array}
$$

$$
\underline{\underline{E x}}: \quad \underline{e}_{1}=\underline{i}, \underline{e}_{2}=\underline{j}, \underline{e}_{3}=\underline{k}
$$

$$
\rightarrow \underline{\omega}=\omega_{x} \underline{i}+\omega_{y} \underline{j}+\omega_{z} \underline{k}
$$

Then, $d \underline{i} / d t=\underline{\omega} \times \underline{i}=\omega_{z} \underline{j}-\omega_{y} \underline{k}$

$$
\begin{aligned}
& d \underline{j} / d t=\underline{\omega} \times \underline{j}=\omega_{x} \underline{k}-\omega_{z} \underline{i} \\
& d \underline{k} / d t=\underline{\omega} \times \underline{k}=\omega_{y} \underline{i}-\omega_{x} \underline{j}
\end{aligned}
$$

IMPORTANT:

- The rates of change of unit vectors have been calculated with respect to the ($\mathrm{X}, \mathrm{Z}, \mathrm{Y}$) system also called "relative to XYZ".
- These rates (vectors) have been expressed in terms of the unit vectors moving with the body.

2.6 EXAMPLES:

ii) Helical Motion:

A particle moves along a helical path. The helix is defined in terms of the Cylindrical Coordinates:
$r=R$ (constant)
$z=k R \phi$, where $k=\tan \alpha$,

α-helix angle

Clearly, as ϕ changes with time, so does z.
So, $\dot{r}=0, \ddot{r}=0, \dot{\phi}=\omega, \ddot{\phi}=\dot{\omega}$

$$
\dot{z}=k R \dot{\phi}, \ddot{z}=k R \ddot{\phi}=k R \dot{\omega}
$$

- $\underline{\mathbf{v}}_{\mathbf{P}}=\dot{r} \underline{\underline{e}}_{r}+r \dot{\phi} \underline{\underline{e}}_{\phi}+\dot{z} \underline{e}_{z}=R \omega \underline{e}_{\phi}+k R \omega \underline{e}_{z}$
- $\underline{\mathbf{a}}_{\mathbf{p}}=-R \omega^{2} \underline{e}_{r}+R \dot{\omega} \underline{e}_{\phi}+k R \dot{\omega} \underline{e}_{z}$
- speed $\dot{s}=\left|\underline{v}_{P}\right|=\sqrt{(R \omega)^{2}+(k R \omega)^{2}}=R \omega \sqrt{1+k^{2}}$
- constant or uniform speed $\rightarrow \ddot{s}=0, \dot{\omega}=0$

$$
\rightarrow \underline{a}=-R \omega^{2} \underline{e}_{R}=\left(\dot{s}^{2} / \rho\right) \underline{e}_{n}
$$

- $\rho=R\left(1+k^{2}\right)$ - radius of curvature of the path of the particle
iii) Harmonic motion: (Reading assignment)

m - mass, k - stiffness of the spring
key point: the force is directly proportional to the distance of the particle from some point \rightarrow $\ddot{x}=-\omega^{2} x ;$ x-displacement
$\omega^{2}>0-\mathrm{a}$ constant (square of natural freq.)
Solution: Let $\quad \mathbf{x}(\mathbf{t})=\mathrm{A} \boldsymbol{\operatorname { c o s }}(\omega \mathrm{t}+\alpha)$

Here, A - amplitude, α - phase angle
(these are determined by initial conditions \mathbf{x}, $\dot{\mathrm{x}}$ at $\mathrm{t}=0$).
If $\boldsymbol{\alpha}=\mathbf{0}$, i.e., $\dot{x}(t)=0$ at $t=0, x(t)=A \cos \omega t$

simple

harmonic
motion

```
T=2\pi/\omega - time period of harmonic motion
\omega-circular frequency
```

- $\mathbf{x}(\mathbf{t})=\mathbf{A} \boldsymbol{\operatorname { c o s }} \boldsymbol{\omega} \mathbf{t}$
- $\dot{x}(t)=-A \omega \sin \omega t=A \omega \cos \left(\omega t+\frac{\pi}{2}\right)$
- $\ddot{x}(t)=-A \omega^{2} \cos \omega t=A \omega^{2} \cos (\omega t+\pi)$
\rightarrow In simple harmonic motion, extreme values of position and acceleration occur when the velocity vanishes. Also, the velocity is out of phase with position by $\pi / 2$, and the acceleration is out of phase by π.

Two-dimensional harmonic motion:

- Consider the spring-mass system shown:

$$
\begin{aligned}
& \ddot{x}=-\omega^{2} x ; \quad \ddot{y}=-\omega^{2} y \\
& x(t)=A \cos (\omega t+\alpha) ; \\
& y(t)=B \cos (\omega t+\beta)
\end{aligned}
$$

- Choose reference time

such that $\boldsymbol{\alpha}=\mathbf{0} \rightarrow \underline{r}(t)=x(t) \underline{i}+y(t) \underline{j}$

$$
\begin{aligned}
& =A \cos \omega t \underline{i}+B \cos (\omega t+\beta) \underline{j} \\
\underline{v}(t) & =-\omega A \sin \omega t \underline{i}-\omega B \sin (\omega t+\beta) \underline{j} \\
\underline{a}(t) & =-\omega^{2} A \cos \omega t \underline{i}-\omega^{2} B \cos (\omega t+\beta) \underline{j}
\end{aligned}
$$

Now: $\cos \omega t=x / A$, and $\cos (\omega t+\beta)=y / B$
or, $\cos \omega \mathrm{t} \cos \beta-\sin \omega \mathrm{tsin} \beta=y / B$
Using expression for $\mathbf{x} / \mathbf{A} \rightarrow$
$y / B=(x / A) \cos \beta-\sin \omega t \sin \beta$
$\rightarrow \sin \omega t=[(x / A) \cos \beta-y / B] \sin \beta$
Since $\cos ^{2} \omega t+\sin ^{2} \omega t=1 \rightarrow$
$(\sin \beta)^{-2}\left[(x / A)^{2}+(y / B)^{2}-2(x / A)(y / B) \cos \beta\right]=1$
(equation of an ellipse)

Harmonic motion in two dimensions (a plane)

2.7 Velocity and Acceleration of a Point in

 a Rigid Body
A, P are two points on the same rigid body

(since $|\rho|=$ const., ϱ changes only in orientation)

- $\underline{v}_{P}-\underline{v}_{A}=\underline{\omega} \times \underline{\rho}=\underline{v}_{P / A}$ velocity of P ω.r.t. Point A , as viewed in the reference frame $\mathrm{XY}_{45} \mathrm{Z}^{\text {. }}$

Now, consider the acceleration:

$$
\begin{aligned}
\underline{a}_{P} & =d \underline{v}_{P} / d t=d\left(\underline{v}_{A}+\underline{\omega} \times \underline{\rho}\right) / d t \\
& =\underline{a}_{A}+\underline{\dot{\omega}} \times \underline{\rho}+\underline{\omega} \times \underline{\dot{\rho}}
\end{aligned}
$$

or

$$
\underline{a}_{P}=\underline{a}_{A}+\underline{\dot{\omega}} \times \underline{\rho}+\underline{\omega} \times(\underline{\omega} \times \underline{\rho})
$$

This is the acceleration of point P in a rigid
body as viewed ω.r.t the frame XYZ ; the point
P is in the rigid body which is rotating at angular velocity $\underline{\omega}$ relative to XYZ , and this rotation rate is changing at the rate $\dot{\underline{\omega}}$.

2.8 Vector Derivative in Rotating Systems

- O - a fixed point in the body
- $\underline{\mathrm{e}}_{1}, \underline{\mathrm{e}}_{2}, \underline{\mathrm{e}}_{3}$ - triad of unit vectors in the body
- $\underline{\omega}$ - angular velocity of the body
- Consider now an arbitrary vector \underline{A}
It can be represented as $\underline{A}=\mathrm{A}_{1} \underline{\mathrm{e}}_{1}+\mathrm{A}_{2} \underline{\mathrm{e}}_{2}+\mathrm{A}_{4} \underline{\mathrm{e}}_{3}$

> There are two observers - $\left\{\begin{array}{c}\text { stationary with XYZ } \\ \text { moving with the body }(\underline{\omega}) .\end{array}\right.$. Then, $\frac{d \underline{A}}{d t}=\left\{\begin{array}{c}\text { can be with respect to } \mathrm{XYZ}\left({ }^{\mathrm{XYZ}} \mathrm{d} \underline{A} / \mathrm{dt}\right) \\ \text { can be with respect to the moving body }\left({ }^{(N} \mathrm{d} \underline{A} / \mathrm{dt}\right)\end{array}\right.$

(depends on the observer)

Let $\underline{\dot{A}}={ }^{X Y Z} d \underline{A} / d t \equiv$ rate of change ω.r.t. XYZ Then

$$
\underline{\dot{A}}=\underbrace{}_{1} \underline{A}_{1}+\dot{A}_{2} \underline{e}_{2}+\dot{A}_{3} \underline{e}_{3}+A_{1} \underline{\dot{e}}_{1}+A_{2} \underline{\dot{e}}_{2}+A_{3} \underline{\dot{e}}_{3}
$$

$(\underline{\dot{A}})_{r}$ the rate of change w.r.t. the body in which \underline{e}_{i} are fixed

Now $\quad \underline{\dot{e}}_{1}=\underline{\omega} \times \underline{e}_{1} ; \quad \underline{\dot{e}}_{2}=\underline{\omega} \times \underline{e}_{2} ; \quad \underline{\dot{e}}_{3}=\underline{\omega} \times \underline{e}_{3}$

$$
\rightarrow A_{1} \underline{\dot{e}}_{1}+A_{2} \underline{\dot{e}}_{2}+A_{3} \underline{\dot{e}}_{3}=\underline{\omega} \times \underline{A}
$$

$$
\rightarrow \underline{\dot{A}}=(\underline{\dot{A}})_{r}+\underline{\omega} \times \underline{A}
$$

In a more general sense, let A and B be two
bodies; $\underline{\omega}_{\mathrm{A} / \mathrm{B}}$ - angular velocity of A as viewed (by an observer) from B;
(Note $\underline{\omega}_{B / A}=-\underline{\omega}_{A / B}$ - angular velocity of B as viewed from A). Then

$$
(\underline{\dot{A}})_{A}=(\underline{\dot{A}})_{B}+\underline{\omega}_{B / A} \times \underline{A}
$$

2.9 Motion of a Particle in a Moving Coordinate System

O^{\prime} - origin of
coordinate system in xyz

R- position of O^{\prime}

 $\underline{\mathrm{r}}_{\mathrm{OP}}{ }^{-}$position of point P (moving object) $\underline{\rho}$ - position of \mathbf{P} w.r.t. O^{\prime} Then, the position of the particle is$$
\underline{\mathrm{r}}_{\mathrm{OP}}=\underline{\mathrm{R}}+\underline{\rho}
$$

Then, the velocity with respect to the $X Y Z$ is $\dot{\underline{r}}_{O P}=\underline{v}_{P}=\underline{\dot{R}}+\underline{\dot{\rho}}$ but $\underline{\dot{\rho}}=(\underline{\dot{\rho}})_{r}+\underline{\omega} \times \underline{\rho}$ (rate of change of $\underline{\rho} \omega . r$. .t. the rotating frame (the rotating body))
$\rightarrow \underline{v}_{P}=\underline{\dot{R}}+(\underline{(\dot{\rho}})_{r}+\underline{\omega} \times \underline{\rho}$ - velocity of P ω.r.t. XYZ.
$(\underline{\dot{\rho}})_{r}$ - velocity of $\mathbf{P} \omega$.r.t. P^{\prime} in xyz. $\underline{\overline{\mathrm{X}}}$ - velocity of $\mathrm{O}^{\prime} \omega$.r.t. XYZ. $\underline{\dot{R}}+\underline{\omega} \times \underline{\rho}$ - velocity of a point P^{\prime} in the rotating \bar{b} ody which is coincident with P at this instant.

$$
\begin{aligned}
\ddot{\underline{r}}_{O P}= & d \underline{v}_{P} / d t=\underline{a}_{P} \text { acceleration in XYZ frame } \\
\text { or } \underline{a}_{P} & =d\left[\underline{\dot{R}}+(\underline{\dot{\rho}})_{r}+\underline{\omega} \times \underline{\rho}\right] / d t \\
& =\underline{\ddot{x}}+d(\underline{\dot{\rho}})_{r} / d t+\underline{\dot{\omega}} \times \underline{\rho}+\underline{\omega} \times d \underline{\rho} / d t
\end{aligned}
$$

Now $d(\underline{\dot{\rho}})_{r} / d t=(\underline{\ddot{\rho}})_{r}+\underline{\omega} \times(\underline{\dot{\rho}})_{r}$
and $\quad d \underline{\rho} / d t=(\underline{\dot{\rho}})_{r}+\underline{\omega} \times \underline{\rho}$
$\rightarrow \underline{a}_{P}=\underline{\ddot{R}}+\underline{\dot{\omega}} \times \underline{\rho}+(\underline{\ddot{\rho}})_{r}+\underbrace{2 \underline{\omega} \times(\underline{\dot{\rho}})_{r}}+\underbrace{\underline{\omega} \times(\underline{\omega} \times \underline{\rho})}$
coriolis centripetal
This is the most general expression for accel

Ex: Motion of a Particle Relative to Rotating Earth
We now consider one of the application of the general formulation for acceleration when a rotating reference frame is quite natural. Here, an object is moving and its motion is observed by someone moving with earth. Assumptions:

- Earth rotates about the sun.
- The acceleration of center of earth is, however, relatively small compared to gravity and acceleration on the earth's surface due to earth's spin, especially away from poles.

Basic definitions:

x - local south (tangent to the meridian circle)
y - local east (tangent to a parallel)
ϕ - longitude (defines location of a meridian plane relative to plane through Greenwich)
λ - latitude (defines location of a parallel relative to the Equator)
z - local vertical
XYZ - Fixed Frame located at \mathbf{O} - center of the earth

More definitions:
OXY - Equatorial plane
OZ - axis of earth's rotation
xyz - attached to the surface of earth at O^{\prime}
(at latitude - λ; longitude - ϕ)
$\underline{\omega}$ - angular velocity of the moving frame
$=-\Omega \cos \lambda \underline{i}+\Omega \sin \lambda \underline{\mathrm{k}}$
Note: $\underline{\omega}$ is constant $\rightarrow \underline{\dot{\omega}}=0$
(for a vector to be constant, both its magnitude and the direction must remain constant w.r.t. the reference frame)

Now, we use the notation already established to define the kinematics:
$\underline{\mathrm{R}}$ - position vector of O^{\prime} to O . $\bar{\rho}$ - position of the mass particle relative to
O^{\prime} (the point on earth's surface)
$\underline{\rho}=\mathrm{x} \underline{\mathrm{i}}+\mathrm{y} \underline{\mathrm{j}}+\mathrm{z} \underline{\mathrm{k}}$
$(\underline{\dot{\rho}})_{r} \equiv(d \underline{\rho} / d t)_{\text {rel to } x y z}=\dot{x} \underline{i}+\dot{y} \underline{j}+\dot{z} \underline{k}$
$(\underline{\ddot{p}})=\ddot{x} \underline{i}+\ddot{y} \underline{j}+\ddot{z} \underline{k}$
$\underline{\omega} \times \underline{\rho}=(-\Omega \cos \lambda \underline{i}+\Omega \sin \lambda \underline{k}) \times(x \underline{i}+y \underline{j}+z \underline{k})$
$=\Omega[-y \sin \lambda \underline{i}+(z \cos \lambda+x \sin \lambda) \underline{j}-y \cos \lambda \underline{k}]$

$$
\begin{gathered}
\underline{\omega} \times(\underline{\omega} \times \underline{\rho}) \equiv \Omega^{2}[-\sin \lambda(z \cos \lambda+x \sin \lambda) \underline{i} \\
\quad-y j-\cos \lambda(z \cos \lambda+x \sin \lambda) \underline{k}] \\
\text { (centripetal acceleration) }
\end{gathered}
$$

$$
\begin{aligned}
& 2 \underline{\omega} \times(\underline{\dot{p}})_{r}=2(-\Omega \cos \lambda \underline{i}+\Omega \sin \lambda \underline{k}) \times(\dot{x} \underline{i}+\dot{y} \underline{j}+\dot{z} \underline{k}) \\
& =2 \Omega[-\dot{y} \sin \lambda \underline{i}+(\dot{z} \cos \lambda+\dot{x} \sin \lambda) \underline{j}-\dot{y} \cos \lambda \underline{k}] \\
& \quad \text { (coriolis acceleration) }
\end{aligned}
$$

Finally, $\underline{\dot{\omega}} \times \underline{\rho}=0$

Now:
$\underline{a}_{P}=\underline{\ddot{R}}+\underline{\dot{\omega}} \times \underline{\rho}+(\underline{\ddot{\rho}})_{r}+2 \underline{\omega} \times(\underline{\dot{\rho}})_{r}+\underline{\omega} \times(\underline{\omega} \times \underline{\rho})$
$\underline{R}=R \underline{k} \quad$ (constant w.r.t. xyz)
$\underline{\dot{R}}=(d \underline{R} / d t)_{\text {rel to } X Y Z}=\underline{\omega} \times \underline{R}$
$\underline{\ddot{R}}=\underline{\omega} \times(\underline{\omega} \times \underline{R})$
$=\Omega^{2} R\left(-\cos \lambda \sin \lambda \underline{i}-\cos ^{2} \lambda \underline{k}\right)$

Note: $\Omega \equiv 7.29 \times 10^{-5} \mathrm{rad} / \mathrm{sec}$

$$
\underline{a}_{P}=\Omega^{2} R\left(-\cos \lambda \sin \lambda \underline{i}-\cos ^{2} \lambda \underline{k}\right)+0
$$

$$
+2 \Omega[-\dot{y} \sin \lambda \underline{i}+(\dot{z} \cos \lambda+\dot{x} \sin \lambda) \underline{j}
$$

$$
-\dot{y} \cos \lambda \underline{k}]
$$

$$
+\Omega^{2}[-\sin \lambda(z \cos \lambda+x \sin \lambda) \underline{i}-y j
$$

$$
-\cos \lambda(z \cos \lambda+x \sin \lambda) \underline{k}]
$$

$$
+\ddot{x} \underline{i}+\ddot{y} \underline{j}+\ddot{z} \underline{k}
$$

- close to earth's surface $\rightarrow \Omega^{2} x \ll \Omega^{2} R$, etc.

$$
\begin{aligned}
\underline{a}_{P} & \approx \Omega^{2} R\left(-\cos \lambda \sin \lambda \underline{i}-\cos ^{2} \lambda \underline{k}\right) \\
& +2 \Omega[-\dot{y} \sin \lambda \underline{i}+(\dot{z} \cos \lambda+\dot{x} \sin \lambda) \underline{j} \\
& -\dot{y} \cos \lambda \underline{k}] \\
& +\ddot{x} \underline{i}+\ddot{y} \underline{j}+\ddot{z} \underline{k}
\end{aligned}
$$

(for motions near earth's surface).

- Since $\Omega=7.29 \times 10^{-5}, \Omega^{2}$ terms are also neglected in study of most motions close to earth's surface. Note that this depends also on the latitude λ of the point O^{\prime}.

Ex: Motion of a Particle in Free Fall Near

 Earth's Surface- Consider a particle moving close to the earth's surfare;
- We will write the equations of motion using the coordinate system attached to the surface of moving earth;

Newton's 2nd Law: $\quad \Sigma \underline{F}=$ ma $_{P}$ (in an inertial frame)
$-m g \underline{k}=m \underline{a}_{P} \rightarrow-g \underline{k}=\underline{a}_{P}$
Neglecting Ω^{2} terms and air drag \rightarrow

$$
\begin{align*}
& \underline{\underline{i}}: \tag{1}\\
& \dot{j}: \ddot{x}-2 \Omega \dot{y} \sin \lambda=0 \tag{2}\\
& \underline{\underline{k}}: \quad \ddot{z}-2 \Omega \dot{x} \sin \lambda+\dot{z} \cos \lambda+g=0 \tag{3}
\end{align*}
$$

Note: Ω^{2} terms also need to be always neglected in calculations to follow.

Initial conditions are:

$\mathbf{x}(\mathbf{0})=\mathbf{0}, \mathbf{y}(\mathbf{0})=\mathbf{0}, \mathbf{z}(\mathbf{0})=\mathbf{h} ; \dot{\mathrm{x}}(0)=\dot{\mathrm{y}}(0)=\dot{\mathrm{z}}(0)=\mathbf{0}$
(1) $\rightarrow \dot{x}-2 \Omega y \sin \lambda=$ cons $\tan t=0$
(3) $\rightarrow \dot{z}-2 \Omega y \cos \lambda+g t=$ cons $\tan t=0$ (5)
(4), (5) in (2) \rightarrow
$\ddot{y}+2 \Omega\left(2 \Omega y \sin ^{2} \lambda+2 \Omega y \cos ^{2} \lambda-g t \cos \lambda\right)=0$
or $\ddot{y}-2 \Omega g t \cos \lambda=0$
$\rightarrow y=\Omega g t^{3} \cos \lambda / 3$
(4), (6) $\rightarrow \dot{x}=(2 / 3) \Omega^{2} g t^{3} \sin \lambda \cos \lambda \simeq 0$

$$
\begin{equation*}
\rightarrow x(t) \simeq 0 \tag{7}
\end{equation*}
$$

(5), (6) $\rightarrow \dot{z}=(2 / 3) \Omega^{2} g t^{3} \cos ^{2} \lambda-g t \simeq-g t$

$$
\begin{equation*}
\rightarrow z(t)=h-g t^{2} / 2 \tag{8}
\end{equation*}
$$

Time to reach earth's surface: $z=0 \rightarrow t=\sqrt{2 h / g}$ Coordinate of the landing point:
$x=0, y=(2 / 3) \Omega h \sqrt{2 h / g} \cos \lambda, z=0$

Schematics

2.10 Plane Motion (motion of a 3-D rigid

 body in a plane)- There exists a plane such that every point has velocity and acceleration parallel to this one fixed plane.

All planes are moving parallel to the the plane colored green. This lamina contains the centroid of the rigid body.

Let $\underline{v}_{A}, \underline{v}_{B}$ - velocities of A and B , two points
in the lamina. Then $\underline{v}_{A}=\underline{v}_{A}+\underline{\omega} \times \underline{\rho}_{A B}$
This relates velocities of two points on the same rigid body.

Question: Does there exist a point such that its velocity is zero, even if only instantaneously?

- Suppose that \mathbf{C} be such a point: $\mathbf{v}_{\mathrm{C}}=\mathbf{0}$. Then, considering points A and B, velocities are: $\underline{v}_{A}=\underline{v}_{C}+\underline{\omega}^{\times} \underline{\rho}_{C A} \rightarrow \underline{v}_{A} \perp^{r} \underline{\rho}_{C A}$ and $\underline{v}_{B}=\underline{v}_{C}+\underline{\omega} \times \underline{\rho}_{C B} \rightarrow \underline{v}_{B} \perp^{r} \underline{\rho}_{C B}$
(Assuming that $\underline{v}_{C}=0$)
Using these, we can construct and find the point C, as well as the angular velocity $\underline{\omega}$, given the velocities \underline{v}_{A} and \underline{v}_{B} for points A and B.

Consider the construction on

 the left. Points A and B are given with their velocities. Then, one can follow the construction and note that $\underline{v}_{A}=\underline{\omega} \times \underline{\rho}_{C A}$ and$\underline{v}_{B}=\underline{\omega} \times \underline{\rho}_{C B}$
(Assuming that $\underline{v}_{C}=0$)
C - instantaneous center (of zero velocity)
$\omega=\left|\underline{v}_{A}\right| /\left|\underline{\rho}_{C A}\right|=\left|\underline{v}_{B}\right| /\left|\underline{\rho}_{C B}\right|$

Ex: Rolling Motion: Consider a wheel moving
 on the fixed ground. 0 ' - center of wheel Let: $\underline{\mathbf{v}}_{\mathbf{O}}$, velocity of $\mathrm{O}^{\text {, }}$ $\underline{\omega}$ - angular velocity of the wheel
They are not independent in rolling.

- Two physical points $\mathrm{C}_{\mathrm{W}}, \mathrm{C}_{\mathrm{G}}$;one belongs to the wheel, the other to the ground on which it is rolling \rightarrow

$$
\underline{v}_{C_{W}}=\underline{v}_{C_{G}}
$$

- Ground fixed $\rightarrow \underline{v}_{C_{G}}=0 \rightarrow \underline{v}_{C_{W}}=0$.
- wheel is one rigid body $\underline{v}_{C_{G}}=0 \rightarrow C_{W}$ is the instant center (of zero velocity).
- Then $\underline{v}_{O^{\prime}}=\underline{v}_{C}+\underline{\omega} \times \underline{r}_{C O^{\prime}}=\underline{\omega} \times(-r \underline{r})$

$$
=\omega r \underline{i}=v_{o^{\prime}} \underline{i} \rightarrow v_{o^{\prime}}=\omega r
$$

(this is always valid)
differentiating with respect to time \rightarrow

$$
\dot{v}_{O^{\prime}}=a_{O^{\prime}}=\dot{\omega} r
$$

- Let $\dot{\boldsymbol{\omega}}=$ angular acceleration of the wheel.

$$
\rightarrow a_{O^{\prime}}=\dot{\omega} r \text { or } \underline{a}_{O^{\prime}}=\dot{\omega} r \underline{i}=\alpha \underline{i}
$$

Now, consider acceleration of the wheel center. The relation is:

$$
\begin{aligned}
& \underline{a}_{O^{\prime}}=\underline{a}_{C}+\underline{\dot{\omega}} \times \underline{\rho}_{C O^{\prime}}+\underline{\omega} \times\left(\underline{\omega} \times \underline{\rho}_{C O^{\prime}}\right) \\
& \underline{\rho}_{C O^{\prime}}=-r \underline{j} ; \\
& \underline{\dot{\omega}} \times \underline{\rho}_{C O^{\prime}}=\alpha \underline{k} \times(-r \underline{j})=\alpha r \underline{i} \\
& \rightarrow \alpha r \underline{i}=\underline{a}_{C}+\alpha r \underline{i}+\underline{\omega} \times(\underline{\omega} \times-r \underline{j})
\end{aligned}
$$

$$
\rightarrow \underline{a}_{C}=-\omega \underline{k} \times \omega r \underline{i}=-\omega^{2} \underline{r}
$$

(it is directed towards the wheel center).

Reading assignment:

Examples 2.3, 2.4-2.5, 2.7

Example 2.6

Consider a wheel of radius r_{2}, rolling inside the fixed track of radius r_{1}. The arm $O O$ 'rotates at a constant angular velocity ω about the fixed point O '.

Find: The velocity $\mathbf{v}_{\mathbf{P}}$ and acceleration $\underline{\mathbf{a}}_{p}$ of a point P on the wheel, specified by angle ϕ w.r.t. line OO'. First Method: O - origin of the fixed frame; Arm is the moving frame; O^{\prime} '- origin of the moving coordinate system. $\left(\underline{e}_{t}, \underline{e}_{n}, \underline{e}_{b}\right)$ - a unit vector triad

$\underline{v}_{P}=\underline{\dot{R}}+(\underline{\dot{\rho}})_{r}+\underline{\omega} \times \underline{\rho}=\underline{v}_{O^{\prime}}+(\underline{\dot{\rho}})_{r}+\underline{\omega} \times \underline{\rho}$ where $\quad \underline{\dot{R}}=\underline{v}_{O^{\prime}} ; \quad \underline{\rho}=\underline{r}_{o^{\prime} P}$

Now $\underline{R}=\underline{r}_{O O^{\prime}}=-\mathrm{Re}_{n}=-\left(r_{1}-r_{2}\right) \underline{\mathrm{e}}_{n}$
So $\quad \underline{\dot{R}}=-\left(r_{1}-r_{2}\right) \underline{\dot{e}}_{n}=-\left(r_{1}-r_{2}\right) \underline{\omega} \times \underline{\mathrm{e}}_{n}$

$$
=-\left(r_{1}-r_{2}\right) \omega \underline{e}_{b} \times \underline{\mathrm{e}}_{n}=\left(r_{1}-r_{2}\right) \omega \underline{\mathrm{e}}_{t}=\underline{v}_{O^{\prime}}
$$

Also $\underline{\rho}=r_{2}\left(\cos \phi \underline{\mathrm{e}}_{n}+\sin \phi \underline{\mathrm{e}}_{t}\right)$
$\rightarrow(\underline{\dot{\rho}})_{r}=r_{2} \dot{\phi}\left(-\sin \phi \underline{\mathrm{e}}_{n}+\cos \phi \underline{\mathrm{e}}_{t}\right)$
$\underline{\omega} \times \underline{\rho}=\omega \underline{e}_{b} \times r_{2}\left(\cos \phi \underline{\mathrm{e}}_{n}+\sin \phi \underline{\mathrm{e}}_{t}\right)$

$$
=-\omega r_{2} \cos \phi \underline{\mathrm{e}}_{t}+\omega r_{2} \sin \phi \underline{\mathrm{e}}_{n}
$$

$$
\rightarrow \underline{v}_{P}=\left(r_{1}-r_{2}\right) \omega \underline{e}_{t}+r_{2} \dot{\phi}\left(-\sin \phi \underline{\mathrm{e}}_{n}+\cos \phi \underline{\mathrm{e}}_{t}\right)
$$

$$
+\omega r_{2}\left(-\cos \phi \underline{\mathrm{e}}_{t}+\sin \phi \underline{\mathrm{e}}_{n}\right)
$$

Rolling Constraint : $\underline{v}_{C}^{{ }^{2}}=0$,

$$
\begin{gathered}
\text { and } P=C \text { when } \phi=\pi \\
\rightarrow \underline{v}_{C}=\left(r_{1}-r_{2}\right) \omega \underline{e}_{t}+r_{2} \dot{\phi} \underline{\mathrm{e}}_{t}+\omega r_{2} \underline{\mathrm{e}}_{t}=0 \\
\text { or } \omega r_{1}=\dot{\phi} r_{2} \rightarrow \dot{\phi}=\omega r_{1} / r_{2} \quad \text { (always valid) }
\end{gathered}
$$

So, $\underline{v}_{P}=\left[\left(r_{1}-r_{2}\right)+r_{1} \cos \phi-r_{2} \cos \phi\right] \omega \underline{e}_{t}$

$$
+\left[-r_{1} \sin \phi+r_{2} \sin \phi\right] \omega \underline{e}_{n}
$$

or $\underline{v}_{P}=\left(r_{1}-r_{2}\right) \omega\left\{[1+\cos \phi] \underline{e}_{t}-\sin \phi \underline{e}_{n}\right\}$
Also, $\dot{\phi}=\omega r_{1} / r_{2} \rightarrow \ddot{\phi}=0$
Acceleration:
$\underline{a}_{P}=\underline{\ddot{R}}+\underline{\dot{\omega}} \times \underline{\rho}+\underline{\omega} \times(\underline{\omega} \times \underline{\rho})+(\underline{\ddot{\rho}})_{r}+2 \underline{\omega} \times(\underline{\dot{\rho}})_{r}$
$\underline{\ddot{R}}=\left(r_{1}-r_{2}\right) \omega\left(\omega \underline{e}_{b} \times \underline{e}_{t}\right)=\left(r_{1}-r_{2}\right) \omega^{2} \underline{e}_{n}$
$\underline{\dot{\omega}} \times \underline{\rho}=0$

Consider the other terms :

$$
\begin{aligned}
\underline{\omega} \times(\underline{\omega} \times \underline{\rho}) & =\omega \underline{e}_{b} \times\left[-\omega r_{2} \cos \phi \underline{e}_{t}+\omega r_{2} \sin \phi \underline{e}_{n}\right] \\
& =\omega^{2} r_{2}\left(-\cos \phi \underline{e}_{n}-\sin \phi \underline{e}_{t}\right)
\end{aligned}
$$

$$
(\underline{\ddot{\rho}})_{r}=r_{2} \ddot{\phi}\left(-\sin \phi \underline{e}_{n}+\cos \phi \underline{e}_{t}\right)
$$

$$
+r_{2} \dot{\phi}\left(-\dot{\phi} \cos \phi \underline{e}_{n}-\dot{\phi} \sin \phi \underline{e}_{t}\right)
$$

$$
=\omega^{2} r_{1}^{2}\left(-\cos \phi \underline{e}_{n}-\sin \phi \underline{e}_{t}\right) / r_{2}
$$

$$
2 \underline{\omega} \times(\underline{\dot{p}})_{r}=2 \omega \underline{e}_{b} \times \omega r_{1}\left[-\sin \phi \underline{e}_{n}+\cos \phi \underline{e}_{t}\right]
$$

$$
=2 \omega^{2} r_{1}\left(\cos \phi \underline{e}_{n}+\sin \phi \underline{e}_{t}\right)
$$

Thus, the acceleration is

$$
\begin{aligned}
& \underline{a}_{P}=\left(r_{1}-r_{2}\right) \omega^{2} \underline{e}_{n}+\omega^{2} r_{2}\left(-\cos \phi \underline{e}_{n}-\sin \phi \underline{e}_{t}\right) \\
&+\omega^{2} r_{1}^{2}\left(-\cos \phi \underline{e}_{n}-\sin \phi \underline{e}_{t}\right) / r_{2} \\
&+2 \omega^{2} r_{1}\left(\cos \phi \underline{e}_{n}+\sin \phi \underline{e}_{t}\right) \\
& \rightarrow \begin{array}{c}
\underline{a}_{P}=\left[\left(r_{1}-r_{2}\right) \omega^{2}-\omega^{2}\left(r_{1}-r_{2}\right)^{2} \cos \phi / r_{2}\right] \\
-\left[\omega^{2}\left(r_{1}-r_{2}\right)^{2} \sin \phi / r_{2}\right] \underline{e}_{t}
\end{array}
\end{aligned}
$$

Second Method:

Let wheel serve as the moving frame; O^{\prime} - origin of the moving coordinate system, attached to the wheel.
Then, $\underline{\omega}=(\omega-\dot{\phi}) \underline{e}_{b}$
$\underline{\alpha}=(\dot{\omega}-\ddot{\phi}) \underline{e}_{b}+(\omega-\dot{\phi}) \underline{\dot{e}}_{b}$
$\underline{\underline{\dot{e}}}_{b}=\underline{\omega} \times \underline{e}_{b}=0$
$\rightarrow \underline{\alpha}=\underline{\dot{\omega}}=(\dot{\omega}-\ddot{\phi}) \underline{e}_{b}$

$\underline{R}=\underline{r}_{o O^{\prime}}=-R \underline{e}_{n} \quad$ (Note : O^{\prime} is on the arm)
$\underline{\dot{R}}=\omega \underline{e}_{b} \times-R \underline{e}_{n}=\omega R \underline{e}_{t} \quad\left(R=r_{1}-r_{2}\right)$
$\underline{\rho}=r_{2}\left(\cos \phi \underline{e}_{n}+\sin \phi \underline{e}_{t}\right)$
$(\underline{\dot{\rho}})_{r}=0 \quad$ (moving frame attached to the wheel)
$\underline{\omega} \times \underline{\rho}=(\omega-\dot{\phi}) \underline{e}_{b} \times r_{2}\left(\cos \phi \underline{e}_{n}+\sin \phi \underline{e}_{t}\right)$
$=(\omega-\dot{\phi}) r_{2}\left(\sin \phi \underline{e}_{n}-\cos \phi \underline{e}_{t}\right)$
$\rightarrow \underline{v}_{P}=\omega\left(r_{1}-r_{2}\right) \underline{e}_{t}+(\omega-\dot{\phi}) r_{2}\left(\sin \phi \underline{e}_{n}-\cos \phi \underline{e}_{t}\right)$
Now, the constraint is Rolling
$\rightarrow \underline{v}_{C}=0$ and $P=C$ when $\phi=\pi$

Imposing constraint $\mathbf{v}_{\mathbf{C}}=\mathbf{0} \rightarrow$

$\dot{\phi}=\omega r_{1} / r_{2} \rightarrow \ddot{\phi}=0(\sin$ ce $\dot{\omega}=0)$
$\rightarrow \begin{array}{r}\underline{\underline{v}}_{P}= \\ \left(r_{1}-r_{2}\right)\{1+\cos \phi\} \omega \underline{e}_{t} \\ \\ \\ +\left(r_{1}-r_{2}\right) \omega \sin \phi \underline{e}_{n}\end{array}$
Acceleration:
$(\underline{\ddot{\rho}})_{r}=0 ; \quad \underline{\mathrm{R}}=\omega^{2}\left(r_{1}-r_{2}\right) \underline{e}_{n}$
.etc.

Rate of Change of a vector in a Rotating Reference Frame

- Let \boldsymbol{a} and \mathscr{B} be two reference frames, \mathscr{B} moves relative to \boldsymbol{a}
- $\left\{\mathbf{E}_{1}, \mathbf{E}_{2}, \mathbf{E}_{3}\right\}$ - orthonormal basis in \boldsymbol{a}
- $\left\{\mathbf{e}_{1}, \mathbf{e}_{2}, \mathbf{e}_{3}\right\}$ - orthonormal basis in \mathfrak{B}
We can express:

$$
\mathbf{b}=b_{1} \mathbf{e}_{1}+b_{2} \mathbf{e}_{2}+b_{3} \mathbf{e}_{3}
$$

in the basis $\left\{\mathbf{e}_{1}, \mathbf{e}_{2}, \mathbf{e}_{3}\right\}$

