ME 562 Advanced Dynamics Summer 2010 HOMEWORK # 7

Due: August 2, 2010

Q1. (see Problem 6-24 in the text). A disk of radius *R* rotates about its fixed vertical axis of symmetry at a constant rate ω . A simple pendulum of length *l* and particle mass *m* is attached at a point on the edge of the disk. As generalized coordinates, let θ be the angle of the pendulum from the downward vertical, and let ϕ be the angle between the vertical plane of the pendulum and the vertical plane of the radial line from the center of the disk to the attachment point, where positive $\dot{\phi}$ is in the same sense as ω .

- 1. Find T_2 , T_1 , and T_0 .
- 2. Obtain the differential equations of motion.
- 3. Assuming that R = l, $\omega^2 = g/2l$, and the initial conditions are $\theta(0) = 0$, $\dot{\theta}(0) = 0$, show that θ cannot exceed 72.93°.

Q2. (see Problem 6-11 in the text for a figure). Consider the system shown. It consists of particles m_1 and m_2 that are connected by a massless rod of length *l*. These particles move on a frictionless horizontal plane, the motion of m_1 being confined to a fixed frictionless circular track of radius *R*. Denote the generalized coordinates for describing the dynamics of the system by the angles θ and ϕ . Then, derive the following:

- 1. The expression for kinetic energy of the system.
- 2. The equations of motion of the system for the coordinates θ and ϕ .
- 3. Identify the ignorable coordinate in the system, and define the generalized momentum p associated with it.
- 4. Define the Routhian function for the system and use it to derive the equation of motion for the reduced one degree-of-freedom system.

Q3. (see Problem 7-2 the text). Four particles, each of mass m/4, are located at $(x_0, 0, 0)$, $(-x_0/3, y_0, -z_0/2)$, $(-x_0/3, -y_0, -z_0/2)$, $(-x_0/3, 0, z_0)$, relative to the *xyz* axes. The particles are connected by rigid massless rods. Solve for the values of x_0 , y_0 , and z_0 such that the system has principal moments of inertia I_{xx} , I_{yy} , and I_{zz} .

Q4. (see Problem 7-6 in the text). A certain rigid body has the following inertia matrix with respect to some reference point:

$$\begin{bmatrix} I \end{bmatrix} = \begin{bmatrix} 450 & -60 & 100 \\ -60 & 500 & 7 \\ 100 & 7 & 550 \end{bmatrix} kg - m^2$$

- a. Solve for the principal moments of inertia at the same reference point.
- b. Find the rotation matrix such that one can transform (rotate) from the xyz system to the principal coordinate system.

Q5. (see Problem 8-3 in the text). A solid homogeneous sphere of mass m_0 and radius r rolls without slipping on a triangular block of mass m which can slide on a frictionless floor. Assume that the system is initially motionless.

- a. Derive the equations of motion for the system.
- b. Find the velocity of the block as a function of time.