ME 513 Engineering Acoustics

MWF 11:30 - 12:20

Prof. J. Stuart Bolton

Office: ME 3061K, HLAB 2002

E-mail: bolton@purdue.edu

Phone: (765) 494-2139

TA: Daniel Carr (djcarr103@gmail.com)

Website: https://engineering.purdue.edu/ME513/

Ray. W. Herrick Laboratories
School of Mechanical Engineering
Purdue University

Fundamentals of Acoustics (4th Edition)

L. E. Kinsler, A. R. Frey, A. B. Coppens and J.V. <u>Sanders</u>

John Wiley and Sons ISBN: 0-471-184789-5

Other References

- 1. Elements of Acoustics (\$30 from ASA)
 - Samuel Temkin (Wiley)
- 2. Foundations of Engineering Acoustics (PU library download)
 - Frank J. Fahy (Elsevier)
- 3. Acoustics An introduction to its Physical Principles and Applications (\$46.94 Amazon)
 - Pierce (Acoustical Society of America)
- 4. The Foundations of Acoustics (free download from Springer.com)
 - Eugen Skudrzyk (Springer-Verlag)

٩

Other References

Acoustics and Industrial Noise Control - 19 lectures

Course Coordinator:
Prof. Amiya R. Mohanty
Mechanical Engineering
Indian Institute of Technology Kharagpur

International Faculty:
Prof. J. Stuart Bolton
Ray W. Herrick Laboratories
School of Mechanical Engineering
Purdue University

Youtube playlist:

https://goo.gl/B1yB6b

Prerequisite:

Undergraduate linear systems or controls course

- Frequency domain analysis
- Complex analysis
- Vectors

Course Assessment:

- Homework 25% (6 assignments)
- Mid-term Exam 25%
- Comprehensive Final 50%

Acoustics:

Study of generation, transmission and reception of energy in the form of vibrational waves in matter.

Sound:

Propagating fluctuations (in pressure, density, velocity, temperature) in a elastic medium in the frequency range of 20 Hz to 20 kHz

Course Objective

To introduce the basic concepts of acoustical analysis to engineers and specifically to study wave propagation, sound radiation, absorption and transmission in a matter directly relevant to noise control practice. Information of this sort is required to design effective noise control treatments.

Course Content

- Simple Mechanical Systems
 - SDOF (Chapter 1)
 - Strings (Chapter 2)
- Acoustic Wave Equation and Simple Solutions (Chapter 5)
- Transmission Phenomena (Chapter 6)
- Sound Radiation from Simple Sources (Chapter 7)
- One-dimensional Systems (Chapter 9 and 10)
 - Ducts
 - Silencers
- Room Acoustics (Chapter 12)

For smind to propagate a medium must have -stiffness -inertia

Surres of Sound

- vilovation of solids

- interaction of flow of solids

- flow turbulence

- Thermal - localized heat

CNT loudspeakers

General Approach

- (i) Deriving or identifying governing eggs
 (ii) Combine to form a ware equation
 (ii) Identify possible substins
 (iv) Application of b.c.'s to select
 appropriate from all possible solutions

compare & contrast

- wave propagation approach
- modal approach

1. Fundamentale of Vibratica
Chapter 1 (1.1-1.)1, 1.13 + 1.14)
SDOF's - sigle degree of treedom systems
1.1 Simple undampsed oscillator

Generally gravity is ignored

(iii) sub (2) into (1)

 $m \frac{dx}{dt^2} + s - x = 0$

$$\frac{1}{16} \frac{d^2x}{dt^2} + \left(\frac{5}{m}\right) = 0$$

$$\frac{5}{m} = \omega_0^2$$

$$\int \frac{d^2x}{dt} + \omega_0^2 x = 0$$

and order ODE

solution features 2 arbitrary constants 1.1.2 Allowed Solutions Wo = 15

x= (A)cox8+] sub into (3)

12x = -82A, cordt dix + 200x = 0

- 8A, cos8+ + woA, cos8+ = 0

Assumed soln in acceptable if $8^2 = w_0^2$

x = A. sin &t is also acceptable

3 so long as

8 = ws

complete solution

x = A, coe wot + A, sin wot