5 Swind Generation and Revoliation in 3-1) 11/2/11 pistan battled 62 nones - quadrupok - modern - diple - Non-compact surce simple MR 513 - Compact

Sund Kadrothin from st the radial particle velocity > 40e 14 2 - 1 Ex rea (in Aluid!) to Use just this velous so surface radial velocity ûrla) = 40 5.2.2 Boundary Conditions Pulsating Sph Symmetre sphilod

Sperical Special Sperical Sper purely radial

- no parasure gradient

ui The B or polivecture Top = jupour 12 M

M

100000 4- (a) = A= pcal

((Ex)2+1 C foca Uolika Lordae foca Uoesta A = beath either k of radius a pulsating sph 11 11 \$(r) = (foc a lloe 1(42/24)

small volume velocity source Volume Vebily source

Problem 2.

An incident transverse wave propagates in the positive-x direction along a uniform tensioned string (the tension in the string is T and its mass per unit length is ρ_L) and reflects from a mass-spring termination at x = 0.

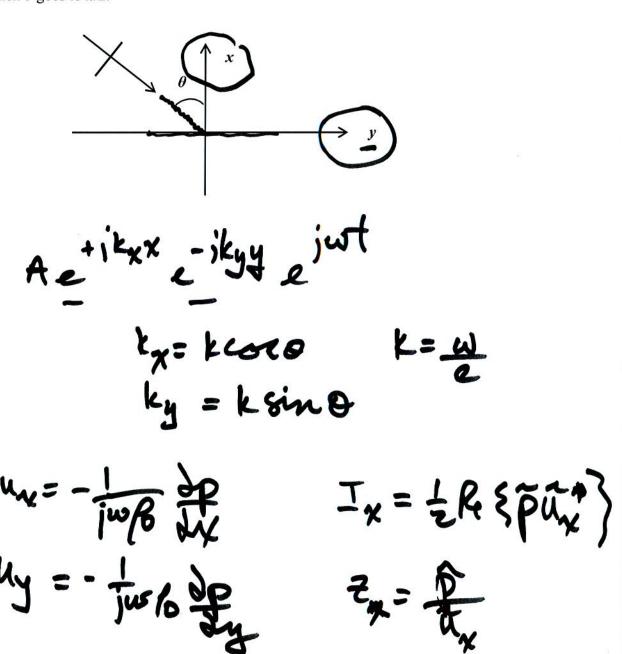
- (i) Give an appropriate assumed solution for the displacement field in the region x < 0.
- (ii) Draw a free body diagram of the forces acting at the string termination at x = 0.
- (iii) Give in equation form the boundary conditions that apply at x = 0.
- (iv) Use the boundary conditions in conjunction with the assumed solution to solve for the reflection coefficient at the termination: i.e., find the ratio of the complex amplitudes of the waves traveling in the negative and positive x-directions.
- (v) Show that the magnitude of the reflection coefficient is always equal to unity for this type of termination.

(iii)
$$y/x_1+1 = A e^{i/w_1-kx_1} + B e^{i/w_1+kx_1}$$
 $y/x_1+1 = A e^{i/w_1-kx_1} + B e^{i/w_1+kx_1}$
 $y/x_1+1 = A e^{i/w_1+kx_1} +$

Problem 3.

A plane sound wave is propagating in *free-space* in the direction shown in the sketch below.

- (i) Give a complete expression for the sound pressure field, defining quantities (such as the wave numbers, for example) as necessary.
- (ii) Derive by using the linearized momentum equation an expression for the vector particle velocity.
- (iii) Give an expression for the specific acoustic impedance normal to the surface x = 0.
- (iv) Derive an expression for the time-averaged acoustic intensity field in the x-direction, and show that the energy flow crossing the surface x = 0 goes to zero when θ goes to $\pi/2$.



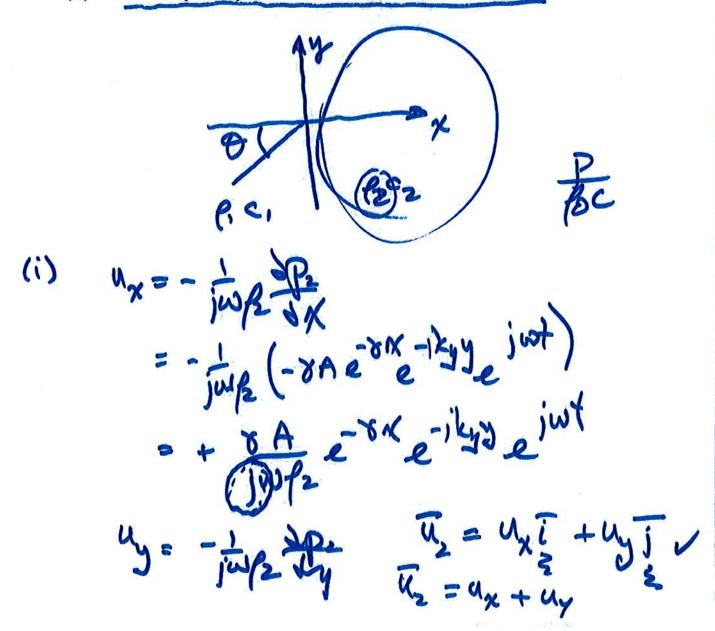
Problem 3.

When a plane sound wave transmits into a second fluid region at an angle of incidence greater than the critical angle, the sound field has the form

 $p(x, y, t) = Ae^{-px}e^{-jk_y}e^{j\omega t}$

where A is complex, γ and k_y are real, x is the coordinate normal to the interface between the two fluid media (and is positive into the second medium), y is the coordinate parallel to the interface, and the second medium has density, ρ_2 and speed of sound, c_2 .

- (i) Derive by using the linearized momentum equation an expression for the vector particle velocity field in the second medium.
- (ii) Derive an expression for the vector, time-averaged acoustic intensity field in the second medium, and show that there is no energy flow normal to the interface in the second medium.
- (iii) Sketch the spatial dependence of the sound field in the second medium.



I= 是限至度就* }

P= 4 = 8x - 1/3x

工火: 宣化至序证:

工工工工工作的的产业了

