Homework 1 Solutions

Problem 1.2.1 (12 points)

Given

Find

Natural frequencies

Solution

General equation of motion: $\ddot{x} + \omega_0^2 x = 0$

a)
$$\sum F_x = -2sx = M\ddot{x}$$
$$M\ddot{x} + 2sx = 0$$
$$\ddot{x} + \frac{2s}{M}x = 0$$
$$\omega_0 = \sqrt{\frac{2s}{M}}$$

b)
$$\sum F_x = -sx = 2M\ddot{x}$$
$$2M\ddot{x} + sx = 0$$
$$\ddot{x} + \frac{s}{2M}x = 0$$
$$\omega_0 = \sqrt{\frac{s}{2M}}$$

c) Two springs of coefficient s in series

Total spring coefficient $s_{tot} = \frac{s_1 s_2}{s_1 + s_2} = \frac{s^2}{2s} = \frac{s}{2}$

$$\sum F_x = -s_{tot}x = -\frac{s}{2}x = M\ddot{x}$$

$$M\ddot{x} + \frac{s}{2}x = 0$$

$$\ddot{x} + \frac{s^2}{2M}x = 0$$

$$\omega_0 = \sqrt{\frac{s}{2M}}$$

$$\begin{array}{c}
\frac{s}{2}x \\
M
\end{array}$$

d)
$$\sum F_x = -2sx = M\ddot{x}$$
$$M\ddot{x} + 2sx = 0$$
$$\ddot{x} + \frac{2s}{M}x = 0$$
$$\omega_0 = \sqrt{\frac{2s}{M}}$$

Problem 1.3.2 (5 points)

Given

Simple oscillator with natural frequency 5 rad/s Displaced 0.03 m from equilibrium and released from rest

Find

- a) The initial acceleration
- b) The amplitude of the resulting motion
- c) The maximum speed attained

Solution

$$x_0 = 0.03 \text{ m}$$

$$u_0 = 0$$

$$\omega_0 = 5 \text{ rad/s}$$

Equation 1.3.1: $x = x_0 \cos \omega_0 t + \frac{u_0}{\omega_0} \sin \omega_0 t = x_0 \cos \omega_0 t$

a)
$$a = \ddot{x} = \frac{d^2}{dt^2} (x_0 \cos \omega_0 t) = x_0 \frac{d^2}{dt^2} (\cos \omega_0 t) = -x_0 \omega_0^2 \cos \omega_0 t$$

 $a(0) = -x_0 \omega_0^2 \cos[\omega_0(0)] = -x_0 \omega_0^2 = -(0.03 \text{ m})(5 \text{ rad/s})^2 = -0.75 \text{ m/s}^2$
 $a(0) = -0.75 \text{ m/s}^2$

b) Because
$$u_0 = 0$$
, therefore $A = x_0 = 0.03 \text{ m}$

c)
$$u = \dot{x} = \frac{d}{dt}(x_0 \cos \omega_0 t) = -x_0 \omega_0 \sin \omega_0 t$$

 $u_{max} = x_0 \omega_0 = (0.03 \text{ m})(5 \text{ rad/s}) = 0.15 \text{ m/s}$
 $u_{max} = 0.15 \text{ m/s}$

Problem 1.5.3 (KFCS) (10 points)

Given

Two complex numbers: $\mathbf{A} = A \exp\{j(\omega t + \theta)\}, \mathbf{B} = B \exp\{j(\omega t + \varphi)\}$

Find

- a) Re{**AB**}
- b) $Re\{A/B\}$
- c) $Re\{A\}Re\{B\}$
- d) ∠{*AB*}
- e) $\angle \{A/B\}$

Solution

$$AB = A \exp\{j(\omega t + \theta)\} \cdot B \exp\{j(\omega t + \varphi)\} = AB \exp\{j(2\omega t + \theta + \varphi)\}$$

$$\frac{A}{B} = \frac{A \exp\{j(\omega t + \theta)\}}{B \exp\{j(\omega t + \varphi)\}} = \frac{A}{B} \exp\{j(\omega t + \theta) - j(\omega t + \varphi)\} = \frac{A}{B} \exp\{j(\theta - \varphi)\}$$

- a) $Re{AB} = AB cos(2\omega t + \theta + \varphi)$
- b) $\operatorname{Re}\{\boldsymbol{A}/\boldsymbol{B}\} = \frac{A}{B}\cos(\theta \varphi)$
- c) $Re\{A\}Re\{B\} = AB\cos(\omega t + \theta)\cos(\omega t + \varphi)$
- d) $\angle \{AB\} = 2\omega t + \theta + \varphi$
- e) $\angle \{A/B\} = \theta \varphi$

Problem 1.6.4 (KFCS) (10 points)

Given

Damped oscillator with general solution $x = A \exp(-\beta t) \cos(\omega_d t + \varphi)$

NOTE: typo in book. The cosine term omits the t.

Starts at rest with a positive speed u_0

NOTE: confusing language. System cannot start at rest (zero velocity) and have a positive speed at the same time. I interpret the problem statement to mean that the system starts at x = 0 with a positive speed.

Find

Value of A

Solution

$$u(t) = \dot{x}(t) = \frac{d}{dt}x(t) = \frac{d}{dt}[A\exp(-\beta t)\cos(\omega_d t + \varphi)]$$

$$= A[-\beta \exp(-\beta t)\cos(\omega_d t + \varphi) - \omega_d \exp(-\beta t)\sin(\omega_d t + \varphi)]$$

$$= -A\exp(-\beta t)[\beta \cos(\omega_d t + \varphi) + \omega_d \sin(\omega_d t + \varphi)]$$

$$x(0) = A \exp(-\beta(0)) \cos(\omega_d(0) + \varphi) = A \cos \varphi = 0$$
(1)

$$u(0) = -A \exp(-\beta(0)) [\beta \cos(\omega_d(0) + \varphi) + \omega_d \sin(\omega_d(0) + \varphi)]$$

= $-A[\beta \cos \varphi + \omega_d \sin \varphi] = -A\beta \cos \varphi - A\omega_d \sin \varphi = u_0$ (2)

Remember that from (1), $A \cos \varphi = 0$

Substituting,=
$$-\beta(0) - A\omega_d \sin \varphi = -A\omega_d \sin \varphi = u_0$$

Solving,
$$A = -\frac{u_0}{\omega_d \sin \varphi}$$

Note from (1): If $A\cos\varphi=0$, then either A=0 or $\varphi=\pm\frac{\pi}{2}$. Obviously, $A\neq0$ because then u_0 could not be positive. So therefore $\varphi=\pm\frac{\pi}{2}$. This means that $A=\mp\frac{u_0}{\omega_d}$ depending on whether φ is positive or negative.

Full solution:
$$A = -\frac{u_0}{\omega_d \sin \varphi}$$
 for $\varphi = \pm \frac{\pi}{2}$