ME363 HW5 Due: Nov. 12, 2024

1. We want to evaluate the cost of a turning operation. The following data have been collected about the process.

Cutting speed = 300 ft/min (91 m/min)	Tool life = 50.5 min
Feed = 0.007 in/rev (0.178 mm/rev)	Depth of cut = 0.100 in. (2.54mm)
Workpiece diameter = 3 in. (76.2 mm)	Length of cut = 18 in. (457.2 mm)
Operating cost = \$35/hr	Tool cost per edge = \$1.75
Non production time /piece = 1.8 min	Tool changing time = 2 min.

- (a) Calculate the tool life to yield minimum machining cost hen a carbide tool (n=0.23) is used.
- (b) Calculate the optimal cutting speed to minimize the machining cost for this turning process
- (c) Determine the total machining cost at the optimal cutting speed determined in part (a).
- 2. Cutting parameters are to be designed for turning of 1020 alloy steel with a carbide insert. The part diameter needs to be reduced from 50 mm to 48 mm. The followings are the known information pertaining to the process and the machine:
 - max. available power of the machine = 10 KW
 - efficiency of the machine = 0.8
 - desired surface finish = 2 µm in Ra
 - maximum allowable cutting force = 1000 N
 - specific cutting energy of the workpiece = 0.05 KW/cm³/min = 3 W/mm³/sec
 - allowable range of feed for the insert = $0.025 \text{ mm} \sim 0.4 \text{ mm}$
 - nose radius of the insert = 0.8 mm
 - (a) Determine the max. feed allowable based on the surface roughness requirement and max. allowable cutting force (hint: choose the smaller of two).
 - (b) Determine maximum material removal rate this machine would allow in machining 1020 alloy steel without exceeding the power limit.
 - (c) Determine the maximum speed that can be used for this process with the feed in selected in part (a) to achieve the maximum material removal rate determined in part (b))
- 3. A blanking die is to be designed to blank the part shown in Figure 1. The material is 5/32 in thick 302 stainless steel.
 - (a) Determine the force required to perform this blanking.
 - (b) Determine the appropriate punch and die diameters. Assume that the clearance of 0.08t is needed between the punch and die for this operation, where t is the thickness of the 302 stainless steel.

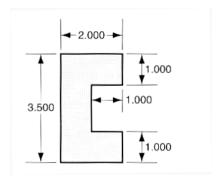


Figure 1. Blanking part geometry.

- 4. A straight bead is being formed on a 2 mm thick aluminum sheet in a 20-mm diameter die as shown in Figure 2. Let Y=120 MPa and E=70 GPa.
- (a) Considering the springback, calculate the outside diameter of the bead after it is formed and unloaded from the die.
- (b) What should be the die diameter if the final desired radius of the bead is 20 mm.
- (c) Determine the percentage area reduction of the bead for part (b).

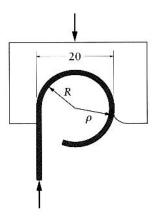


Figure 2 Bead Forming with a Die.