Solution to Problem 1.
(1) The sum of the moments about the right-hand bearing C can be written as

XM =0 (la)
that is
14R, — 7F, — 2Fg = 0 (1b)

Substituting the maximum forces at A and B, thatis, F, = 1300 lb and Fgz = 500 Ib into Eq. (1b),
the maximum reaction force at bearing O is

R, =721.431b (2)
The sum of the forces in the Y-direction can be written as

SF, =0 (32)
that is
R0+RC—FA+FB=O (3b)

Substituting the maximum force at A and B and Eq. (2) into Eq. (3b), the maximum reaction force
at bearing C is

Re = 1078.57 b (4)

The shear force diagram showing the maximum forces on the bar is shown in Figure 1a.

V(lb)
A 72143 1b
750 &
500 +
250+
0 L L L Il Il L L
2 4 6 8 10 12 1 X
=250
—-500 |
7501 -578.57 Ib
—1000 |
-1078.57 Ib
Figure 1a. The shear force diagram of the bar.
The maximum and minimum bending moments at section A are
Ma, .. =7Ro=7x72143 =5050.011b-in  and Apin = 0 (5a)
and the maximum and minimum bending moments at section B are
Mg .. =12Ro—5F, =2157.161b"in and Mg . =0 (5b)
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The bending moment diagram of the bar is shown in Figure 1b.
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Figure 1b. The bending moment diagram of the bar.

v

(i1) Note that the bending moment at section A is the largest and the diameter at section A is the
smallest and the stress concentration effects are only at section A. Therefore, the critical section
of the bar is section A. The critical element is at the outer edge of the critical section.
The factor of safety guarding against yielding using the Langer line can be written from Eq.
(6-43), see page 330, as
Sy
Ny = ————— (6)

y 0y + Om
The yield strength of AISI 1030 cold drawn steel, see Table A-20, page 1056, is
Sy = 64 kpsi (7)

From Eq. (5a), the alternating component of the bending moment at section A is

My, = Momc il = 9551p, in (8a)

a

and the mean component of the bending moment at section A is

Ma,, = s M) = 25751b, in (8b)

m

The alternating and mean components of the normal stress at section A are

Ma,cC _ 32Ma, Ma € _ 32Ma,,

Oy = — == —3 and Om = — == —3 9)

Substituting Egs. (8a) and (8b) into Eq. (9), the alternating and mean components of the normal
stress are

_ 2525x32

s _ 2525x32
a™ 163

= 6.28 kpsi and Om=~——5 = 6.28 kpsi (10)

Note that the effects of stress concentration are neglected here. Substituting Egs. (7) and (10) into
Eq. (6), the factor of safety guarding against yielding is
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n,=—2 =51 (11)

Y 7 628+6.28

(ii1) The Gerber parabola criterion of fatigue failure for infinite life from Eq. (6-48), page 334, can

be written as
1/2
1 o, .S, . 20, S
n, =—(—2) (L) <=1+ 1+ (—2—=< 12
y 2(Se)(am){ { (GS )} } (12)

a ut

The fully corrected endurance limit of the bar can be written from Eq. (6-17), see page 309,
can be written as
Se = KakpkckgkekeSe (13)

The uncorrected endurance limit of the bar from Eq. (6-10), see page 305, is
SL =0.5S,; (14)
The ultimate tensile strength of AISI 1030 cold drawn steel, from Table A-20, see page1056, is
Sut = 76 kpsi (15)
Substituting Eq. (15) into Eq. (14), the uncorrected endurance limit of the bar is
Se = 0.5 X 76 = 38 kpsi (16)
The surface modification factor from Eq. (6-18), see page 311, is
k, = aSb, = 2.70 x 7670265 = 0.857 (17)

The size modification factor. Since the round bar is not rotating then the equivalent diameter can
be written from Eq. (6-23), see page 313, as

d. =0.370d = 0.370 X 1.6 = 0.592 in (18)
Then the size modification factor can be written from Eq. (6-19), see page 312, as
ky, = 0.879d7%197 = 0.879 x 0.59279197 = 0,930 (19)

Substituting Egs. (16), (17), and (19) into Eq. (13), the fully corrected endurance strength of the
bar is

Se = 0.857 x 0.930 x 38 = 30.29 kpsi (20)
The fatigue stress concentration factor for the critical element from Eq. (6-32), see page 321, is
Ke=1+qKi—1) (21a)

Given D=2.41n,d = 1.6 in, and r = 0.4 in, the theoretical stress concentration factor for the critical
element from Figure A-15-14, see page 1046, is

K, =15 (21b)



Substituting the notch sensitivity q = 0.88 and Eq. (21b) into Eq. (21a), the fatigue stress
concentration factor is
Ki=14+088x(1.5-1) =144 (22)

The alternating and mean components of the normal stress on the critical element, including
the fatigue stress concentration factor at the groove, can be written as

0, = Kfca,nom and Om = Kfcm,nom (23)

Substituting Egs. (10) and (22) into Eq. (23), the alternating and mean components of the normal
stress on the critical element are

0, =144x628=904kpsi and o, =144x6.28=904kpsi (24)

Substituting Egs. (15), (20), and (24) into Eq. (12), the factor of safety as predicted by the Gerber
parabola failure criterion for infinite life can be written as

Ne = 2(22) (22’ {—1 +[1+ (—2X9'°4X3°'29)2]1/2} (252)

2 \30.29 9.04 9.04X76

Therefore, the fatigue factor of safety as predicted by the Gerber parabola criterion of failure for
infinite life is
Ny =29 (25b)



Solution to Problem 2. The free body diagram of the shaft is shown in Figure 1.
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Figure 1. The free body diagram of the shaft. (Not drawn to scale).
The sum of the moments about the Z-axis through section O is

My, =0 (1a)
that is
—2inxXF,—8inXFg+10inX R, =0 (1b)

Substituting F, = 250 Ib and Fz = 500 Ib into Eq. (1b), the reaction force at section C is
R, =4501b (10
The sum of the forces in the Y-direction can be written as

IE, =0 (2a)
that is
RO_FA_FB+RC=0 (Zb)

Substituting F, = 250 1b and Fz = 500 Ib and Eq. (1c) into Eq. (2b), the reaction force at O is

R, =3001b (20)



(a) Section 1 (0 in <x <2 in). A cut through this section gives the free body diagram shown in

Figure 2.
Y

———————
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Figure 2. The free body diagram for the section of the shaft between O and A.

The sum of the forces in the Y-direction can be written as

LE =0
that is
Ro—V=0

Substituting Eq. (2c¢) into (3b), the shear force is
V =3001Ib

The sum of the moments about the Z-axis at section O can be written as

IMy,=0
that is
+M—-x-V =0

Substituting Eq. (3¢) into (4b), the bending moment is
M = (300 x) lb-in
Therefore, the bending moment at section A is

M, = 300 X 2 lb-in = 600 Ib-in

(3a)

(3b)

(30)

(4a)

(4b)

(4c)

(5)

(b) Section 2 (2 in <x < 8 in). A cut through this section gives the free body diagram shown in

Figure 3.
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Figure 3. The free body diagram for the section of the shaft between A and B.

The sum of the forces in the Y-direction can be written as

$F,=0
that is
RO_FA_V=O

Substituting Eq. (2c) and F, = 250 lb into (6b), the shear force is
V=501Ib
The sum of the moments about the Z-axis at section O can be written as

XMy,=0
that is
+M —x-V—-—F;X2in=0

Substituting Eq. (6¢) and F, = 250 1b into (7b), the bending moment is
M = (50 x4+ 500) Ib-in
Therefore, the bending moment at section B is

Mg = (50 X 8 + 500) Ib-in = 900 Ib-in

(6a)

(6b)

(6¢)

(7a)

(7b)

(7c)

(8)

(c) Section 3 (8 in < x < 10 in). A cut through this section gives the free body diagram shown in

Figure 4.
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Figure 4. The free body diagram for the section of the shaft between B and C

The sum of the forces in the Y-direction can be written as

ZF, =0 (9a)

that is
RO_FA_FB_V:O (9b)

Substituting Eq. (2c), F4, = 250 1b and Fz = 500 Ib into Eq. (9b), the shear force is
V =-4501b (9¢)
The sum of the moments about the Z-axis at section O can be written as

M, =0 (10a)
that is
+M —x-V—F;x2in—Fz x8in=0 (10b)

Substituting Eq. (9¢), F, = 250 1b and Fz = 500 Ib into Eq. (10b), the bending moment is
M = (—450 x + 4500) Ib-in (10¢)

The shear force diagram of the shaft in the X-Y plane is shown as Figure 5.
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Figure 5. The shear force diagram for the shaft.

The bending moment diagram for the shaft is shown in Figure 6.
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Figure 6. The bending moment diagram for the shaft.

(1) The reaction forces at bearings O and C are given by Egs. (2¢) and (1¢), that is

R, =3001b and R, =4501b (11a)
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The bending moments at sections A and B are given by Egs. (6) and (8), that is
M, = 600 Ib-in and Mg = 950 Ib-in (11b)
(i1) The ultimate tensile strength of AISI 1020 CD steel shaft, from Table A-20, see page 1056, is

Sut = 68 kpsi (12)
Therefore, the uncorrected endurance limit can be written from Eq. (6-10), see page 305, as

S, = 0.55,; = 34 kpsi

(13)
The fully corrected endurance limit can be written from Eq. (6-17), see page 309, is
Se = kakpkckakekeSe (14)
The surface modification factor, see Eq. (6-18), page 311, can be written as
k, = aSk, (15a)
For machined finish, the coefficient and the exponent from Table 6-2, see page 311, are
a=2.70kpsi and b =—-0.265 (15b)
Substituting Eqs. (12) and (15b) into Eq. (15a), the surface modification factor is
k, = 2.70 x 6879265 = 0.883 (15c¢)
The size factor, see Eq. (6-19), page 312, is

k, = 0.879d7%107 = 0.879 x 1.37%107 = 0.855
The loading factor for combined loading, see page 314, is

(16a)
k.=1
The remaining modification factors are specified as

(16b)
kg =ke=ks=1 (16¢)
Substituting Egs. (13), (15c¢), and (16¢) into Eq. (14), the fully corrected endurance limit is
S, = 25.669 kpsi

(17)
(ii1) The largest bending moment is at section B, see Figure 6, and the stress raiser is at section B.
Therefore, the critical element is on the circumference of the shaft at section B.

The Goodman failure criterion can be written from Eq. (6-40), see page 329, as

! !
1 05, On

+
nf Se Sut

(18)
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For the critical element E (which is at the circumference of the shaft at the critical section B), the
normal stress due to bending can be written as

d
Mgy Mp>
(Ux)bending = TB = i 2 (19a)
where the diameter of the shaft at section B is
d=D—-2r=15in—2x0.1in=1.3in (19b)

The second moment of area of the shaft at section B is

_ md* 9
T 64 (19¢)
Substituting Egs. (19b) and (19c¢) into Eq. (19a), the normal stress due to bending is
32Mp 32 %900 lb-in ]
(Ux)bending = Td3 = 7% (1.3 in)° = 4.173 kpsi (20)

Since the shaft is rotating then the normal stress due to bending is fully reversed, that is, the mean
stress is zero. The alternating and midrange components of the normal stress due to bending are

|(Gx)bending| = 4.173 Kkpsi and (Um)bending =0 (21)
The shear stress due to the torque acting on the critical element E can be written as

() fe (22a)
T . = —_—
torsion ] a

o d. . .
Substituting | = %nd4 and ¢ = 5 into Eq. (22a), the torsional shear stress is

16T 16 X 600 lb-in
(Dtorsion = d3 = 7 x (1.3 in)3

= 1.391 kpsi (22b)

Since the torque is constant then the alternating and midrange components of the shear stress are

(Ta)torsion =0 and (Tm)torsion = 1.391 kpsi (23)

The von Mises alternating component of stress and the von Mises mean component of stress for
the critical stress element E can be written from Egs. (6-66) and (6-67) see page 348, as

1
2 2\2
O'(; = {[(Kf)bending (O'a)bending ] +3 [(Kfs)torsion(Ta)torSiO”] } (243)

and
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1
2 2\7
Om = {[(Kf)bending (O'm)bending ] +3 [(Kfs)torsion(Tm)torswn] } (24Db)

Substituting Egs. (21) and (23) and K = K = 1.57 and Kfs = Kr;, = 1.33 into Egs. (24a)
and (24b), the von Mises alternating component of stress is

o), = 6.552 kpsi (25a)
and the von Mises mean component of stress is
oy = 3.204 kpsi (25b)

Substituting Egs. (12), (17), (25a), and (25b) into Eq. (18), the fatigue factor of safety can be
written as

1
"~ 6552 _3.204 (262)
25.669 68
Therefore, the fatigue factor of safety is
ng = 3.3 (26b)

Alternative approach. The fatigue factor of safety from the Goodman criterion can be written from
Eq. (7-7), see page 382, as

1 16

1 2 27 1 2 277
. W{i |4k Mo)” + 3(kpsTa) | + " |4(KMn)” + 3(KpsTr,) ]2} 27)

Since the shaft is rotating and the torque is constant, at the critical element, then the midrange and
alternating components of the bending moment are

M, =0 and M, = |Mg| =900 lb-in (28a)
The midrange and alternating components of the torque are

T,, =T = 600 lb-in and T,=0 (28Db)

Substituting Eqs. (28b) and Ky = K = 1.57 and Kfs = Kr; = 1.33 into Eq. (27), the fatigue
factor of safety from the Goodman criterion can be written as

1
"t =76 A B (29)
wd3 (s—e + s—ut)
where the coefficients are
A= \/4(KfMa)2 +3(KpT,)" = 2826 Ib-in (30a)

and
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B= J4(Kme)2 +3(KpsT)” = 1382177 Ib-in (30b)

Substituting Egs. (30b) into Eq. (29), the fatigue factor of safety from the Goodman criterion of
failure is
n, =33 31)

Note that this answer is in complete agreement with Eq. (26b).
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Solution to Problem 3. The free body diagram of the bar is shown in Figure 1.
Fa

o
jvs)

Figure 1. The free body diagram of the bar.
The sum of the moments about bearing O can be written as
—-8F+16B,=0 (la)
Rearranging this equation, the vertical reaction force at bearing C can be written as
B, =05F (1b)
The sum of the forces in the Y-direction can be written as
0,+B,—F=0 (1c)

Substituting Eq. (1b) into Eq. (1c¢), and rearranging, the vertical reaction force at bearing O can be
written as

0,=05F (1d)
The bending moment diagram for the bar is shown in Figure 2.
M
A
I
Ma F —————————————————

|
|
I
I
|
I
¢
A

Figure 2. The bending moment diagram for the bar.

The critical section is section A because (i) the bending moment is the largest; and (ii) the effects
of stress concentration. The sum of the moments about the critical section A can be written as

14



M,—80,=0 (2a)

Substituting Eq. (1d) into Eq. (2a), and rearranging, the bending moment at the critical section A
can be written as
My,=4F (2b)

Therefore, the maximum and the minimum bending moments at the critical section A are
My max = 8.0 Kip-in and My min = — 4.0 kip-in (2¢)

Part 1. (a). For a circular cross-section, the maximum normal stress due to the bending moment

M can be written as
_ 32M

-2 Ga)

The critical element is at the circumference of the bar at the critical section A. The nominal values
of the maximum and minimum bending stresses acting on the critical element are

_ 32x8.0

Omax = 553 10.186 kpsi and Opmin = 32x(=4.0) _

o0 = —5.093 kpsi (3b)

(b) The theoretical stress concentration for a round bar with a shoulder fillet is given by Figure A-
15-9, see page 1044. The geometry is

3.0 _ 005

P=30-15 and L=2%_0025 (4a)
d 20 d 20
Therefore, the theoretical stress concentration factor is
K, = 2.6 (4b)

For the fillet radius r = 0.05 inches and the ultimate tensile strength Sut = 150 kpsi, the notch
sensitivity from Figure 6-26, see page 321, is

q =0.87 (5a)

Alternative Procedure: The notch sensitivity can be written from Eq. (6-33), see page 322, as

1
= 5b
1= 7 (5b)

\/?

The Neuber constant for bending can be written from Eq. (6-35), see page 322, as

Va = 0.246 — 3.08(1073)S,,; + 1.51(1075)S2, — 2.67(1078)S3, vin (5¢)

Substituting the ultimate tensile strength Sut = 150 kpsi into Eq. (5¢), the Neuber constant is
Vva = 0.034+/in (5d)
Substituting the specified notch radius and Eq. (5d) into Eq. (5b), the notch sensitivity is
q = 0.869 (Se)
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Note that the answer given by Eq. (5e) is in good agreement with Eq. (5a).
The fatigue stress concentration factor can be written from Eq. (6-32), see page 321, as
Ke=1+q(K,—1) (6a)
Substituting Egs. (4b) and (5a) into Eq. (6a), the fatigue stress concentration factor is
Kr=1+0.87(2.6 —1) = 2.392 (6b)
Check: Substituting Egs. (4b) and (5¢) into Eq. (6a), the fatigue stress concentration factor is
Kr =1+0.869(2.6 —1) = 2.391 (6¢)

The ASME elliptic failure criterion can be written from Eq. (6-52), see page 335, as

Oqa 2 Om 2 _ 1
() +(2) =5 (72)
The mean and alternating components of the normal stress can be written from Eqgs. (6-38) and (6-

39), see page 327, as
O = Kf Umax;‘ffmin and 0, = Kf |Umax2_0min| (7b)

Substituting Egs. (3b) and (6b) into Eq. (7b), the mean and alternating components of the normal
stress are
0y = 6.09 kpsi and o, = 18.26 kpsi (7¢)

The ultimate tensile strength and the yield strength of the bar are specified, respectively, as
Sut = 150 kpsi and Sy =90 kpsi (8a)
The uncorrected endurance limit can be written from Eq. (6-10), see page 305, as
S, = 0.55,; = 75 kpsi (8b)
The fully-corrected endurance limit can be written from Eq. (6-17), see page 309, as
Se = kokpkckakokeSe (8c)
Substituting Eq. (8b) and the Marin factors into Eq. (8c), the fully-corrected endurance limit is
Se = 0.716 x 75 = 53.7 kpsi (8d)
Substituting Egs. (7¢), (8a), and (8d) into Eq. (7a), the fatigue factor of safety can be written as
= (220" 4 (£2)) " =20 o)
Part I1. (a). Increasing the fillet radius to r = 0.15 inches affects the fatigue stress concentration
factor. The geometry is

b_30_ 1.5 and r_01s 0.075 (10a)
d 20 d_ 20
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The theoretical stress concentration factor from Figure A-15-9, see page 1044, is
K, =181 (10b)

For the fillet radius r = 0.15 inches and the ultimate tensile strength Sut = 150 kpsi, the notch
sensitivity from Figure 6-26, see page 321, is

q =091 (11a)

Alternative Procedure. Since the ultimate strength is unchanged then the Neuber constant is as

given by Eq. (5d). Therefore, the notch sensitivity obtained from Egs. (5b) and (5d), with r=0.15

inches, is
q =0.92 (11b)

Substituting Eq. (11a) into Eq. (6a), the new fatigue stress concentration factor is
Kr=1+091(1.81-1) = 1.737 (11¢)

The nominal maximum and minimum bending stresses are given by Eq. (3b). Therefore,
substituting Egs. (3b) and (11c¢) into Eq. (7b), the mean and alternating components of the normal
stress are

Oy, = 4.42 kpsi and o, = 13.27 kpsi (12)

The fully-corrected endurance limit is the same as in Part [; that is, Eq. (8d). Substituting Egs. (8a),

(8d), and (12) into Eq. (7a), the new fatigue factor of safety is
-1/2

1327\2 | (4.42)?
w= () + () =40 (13)
Comparing Eq. (13) with Eq. (9) shows that increasing the fillet radius to r = 0.15 inches results
in a 38% increase (approximately) in the fatigue factor of safety.

(b). Using a ground finish alters the Marin surface modification factor. The coefficient and
exponent, for a ground finish, from Table 6-2, see page 311, are

a=134 and b = —0.085 (14a)
Therefore, the surface modification factor from Eq. (6-18), see page 311, is
k, = aSZ, = 1.34 x 15079085 = 0,875 (14b)

Substituting Egs. (8b) and (14b) and the remaining Marin factors given in Part I into Eq. (8c), the
fully corrected endurance limit is

S, = 0.875 X 75 = 65.625 kpsi (15)

Note that the fatigue stress concentration factor has not changed, therefore, the mean and
alternating components of the normal stress are as given by Eq. (7c). Substituting Egs. (7¢), (8a),
and (15) into Eq. (7a), the fatigue factor of safety can be written as

= ((222)" 4 (22)°) " = 35 (16
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Comparing Eq. (16) with Eq. (9) indicates that grinding the surface results in a 21% increase
(approximately) in the fatigue factor of safety compared to the cold-drawn surface. Also,
comparing Eq. (16) with Eq. (13) shows that increasing the fillet radius to r = 0.15 inches compared
to the ground surface results in a 14% increase (approximately) in the fatigue factor of safety.
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Solution to Problem 4.
(1) The basic dynamic load rating and the static load rating for a single row 02-Series angular
contact ball bearing with a bore diameter of 50 mm, see Table 11-2, page 587, are

C,=37.7kN and C, =22.8kN (1)

Since the inner ring of the ball bearing is rotating then the rotation factor, see page 585, is
V=1 ()
The radial load and the axial load acting on the ball bearing are specified as
F =25kN and F, =12kN (3)
From Egs. (1) and (3) the ratio of the axial load to the static load rating is

Fo_ 12 45063 (4)
C, 228

The corresponding limit value for the ratio given by Eq. (4), see Table 11-1, page 586, is
0.42<e<0.44 (5)

The dimensionless parameter, see Eq. (11-11a), page 585, is

Fo_ 12 o4 (6)
VE,  (D(25)

Since Eq. (6) is greater than Eq. (5) then the axial load cannot be ignored. The equivalent radial
load can be written from Eq. (11-12), see page 586, as

F,=XJF,+YF, (Ta)
For i =2, see Table 11-1, page 586, the radial factor X, =0.56 and from interpolation

Y,-1.04  0.5263-0.42

1.00-1.04  0.56-0.42 (70)
Rearranging this equation, the radial factor is
Y, =1.0096 (7¢)
Substituting the given loads and Egs. (2) and (7¢) into Eq. (7a), the equivalent radial load is
F,=0.56x1x25+1.0096x12=26.1152 kN (8)

Note that the equivalent radial load given by Eq. (8) is greater than the applied radial load F .
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(1) Substituting F, = F}, into Eq. (11-9), page 584, the basic dynamic load rating is

r l/a

Co=a,F i (9a)

ifwﬂﬁ—xﬁ{m(g;%%_

Rearranging Eq. (9a), the design life as a dimensionless multiple of the rating life can be written

as
1 1/b Clo a
X, = {xo +(6—x0){ln(gj} ](EJ (9b)

The application factor for poor seals, see Table 11-5, page 589, is

a,=12 (10a)
The exponent for ball bearings, see page 580, is
a=3 (10b)
The Weibull distribution parameters are specified as
x, =0.02, 6 = 4.459 and b=1.483 (10c)

The desired reliability is specified as

R, =0.96 (10d)

Substituting Egs. (1), (8), and (10) into Eq. (9b), the design life as dimensionless multiple of the
rating life is

1
- 3
1.483
xp = 0.02+(4.459-0.02) 1n(L) 37T | _0.9289 (11)
0.96 (1.2)(26.1152)

Check. An approximation to the basic dynamic load rating can we written from Eq. (11-10), see
page 584, as

1/a
X

C,=a,F D. (12a)

o [%+M%H1RJW}

Substituting Egs. (1), (8), and (10) into Eq. (12a), the design life as a dimensionless multiple of
the rating life is

20



Xp = [0.02+ (4.459-0.02){1 —0.96}@}[%j =0.917 (12b)

Note that the answers given by Eqgs. (11) and (12b) are in good agreement.
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Solution to Problem 5.
(i) The nominal major diameter (or bolt shank diameter) of the UNC 5/8 in — 11 — grade 7 steel
bolt, see Table 8.2, page 425, is

d =0.62501n (1a)

Also, the tensile stress area, see Table 8.2, page 425, is
4,=0.2261in’ (1b)
Since the length of the bolt is L =3.251in then the length of the threaded portion of the bolt can

be written from Table 8-7, see page 438, as
LT=2d+iin (2a)

Substituting Eq. (1a) into Eq. (2a), the length of the threaded portion of the bolt is
L, =2(0.6250) +i =1.501in (2b)

The length of the unthreaded portion of the bolt (that is, the bolt shank) can be written from Table
8-7, see page 438, as
l,=L-L, (3a)

Substituting Eq. (2b) into Eq. (3a), the length of the unthreaded portion of the bolt is
[,=3.25-150=1.75in (3b)
The grip is the total thickness of the two plates, that is
[=2(1.25)in=2.51n 4)

The length of the threaded portion of the bolt within the grip can be written from Table 8-7, see
page 438, as
[ =1-1, (5a)
Substituting Egs. (3b) and (4) into Eq. (5a), the length of the threaded portion of the bolt within
the grip is
[ =25-1.75=0.751n (5b)

The cross-sectional area of the unthreaded portion of the bolt is

wd® _ 7(0.6250)°

A==

=0.3068 in’ (6)

The stiffness of the bolt can be written from Eq. (8-17), see page 437, is

— Ad 141 Eb (73)
A, L +A41,

b
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Substituting Egs. (1b), (3), (5), (6) and E, =28x10° Ibs/in” into Eq. (7a), the bolt stiffness is

(0.3068)(0.226)x 28 x 10°

= =3.1033x10° Ibs / in (7b)
(0.3068 % 0.75) +(0.226 x 1.75)

The stiffness of the plates (using the diameter of the washer face under the bolt head d, =1.5d
and the half apex angle & =30°) can be written from Eq. (8-22), see page 440, as
0577147 E, d

km =
o[ 50-37741+05d
0.57741+2.5d

(82)

Substituting the modulus of elasticity Ep =34x10° Ibs/in’, the bolt shank diameter d = 0.625 in,
and Eq. (4), into Eq. (8a), the stiffness of the plates is
6
L = 0.5774 x £ x34x10° x0.625 —17.981%10° Ibs/ in (8b)
" 2ln[ 50.5774x2.5+0.5% 0.625]

0.5774x2.5+2.5x0.625

The stiffness constant of the joint can be written from Eq. (f), see page 448, as

- ©oa)
k,+k,
Substituting Egs. (7b) and (8b) into Eq. (9a), the stiffness constant of the joint is
A 10°
3.1033x10 0.147 (9b)

T 3.1033%10°+17.981x10°

which implies that the percentage of the external load taken by the bolt is 14.7%. This value is
acceptable since the joint constant should, in general, be less than 0.20, see Table 8-12, page 448.
(ii) The factor of safety guarding against joint separation can be written from Eq. (8-30), see page
452, as

n, = —Li (10a)
P(1-C)
Substituting the preload F; =20 kips, the maximum value of the external load P=P__=2kips,
and Eq. (9b) into Eq. (10a), the factor of safety against joint separation is
20x10°
(10b)

n0: 3 =
2x10°(1-0.147)
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The load factor can be written from Eq. (8-29), see page 452, as

S,A-F,_F,~F
n, == =L (11)
CcP CP

The proof strength of the SAE grade 7 steel bolt from Table 8-9, see page 444, is
S, =105 kpsi (12)

Therefore, the proof load from Egs. (1b) and (12) is
F,=8,4, =105 x 0.226 = 23.73 kips (13a)

The ratio of the given preload to the proof load from Eq. (13a) is

F,
£ 20 s (13b)
F, 23.73

Substituting Egs. (1b), (9b), (12), the preload F, =20 kips, and the maximum value of the external

load P=P__=2kips into Eq. (11), the load factor is

max

3 _ 3
nL:lOS x10°x0.226 -20x10 _127 (14)
0.147 x 2000

(iii) The fatigue factor of safety using the Goodman criterion of failure can be written from Eq.
(8.38), see page 458, as

= S.(S.—01) (15)
Suto-a + Se(o-m - O-l)
The ultimate tensile strength of the SAE grade 7 steel bolt from Table 8-9, see page 444, is
S =133kpsi (16)

The fully corrected endurance strength of the bolt with d =0.625 in from Table 8-17, see page
457, is
S =20.6 kpsi (17)

The preload stress can be written from Example 8.3, see page 451, as

o =i (18a)

Substituting the preload F, =20 kips and Eq. (1b) into Eq. (18a), the preload stress is

3
o = 20107 _¢g 496 kpsi (18b)
'~ 70226
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The mean stress can be written from Eq. (8.36), see page 457, as

O-m — C(Pmax+Pmin)+£ (193)
24, 4

t

Substituting Egs. (1b), (9b), (18b), P

max

=2kips, P =7501b, and the preload F; =20 Kkips, into
Eq. (19a), the mean stress can be written as

0.147(2000+750) . 20x10°
o, = psi+
2x0.226 0.226

kpsi (19b)

Therefore, the mean stress is

0, =894.36 psi+88495.58 psi = 89.39 kpsi (19¢)

The alternating component of the stress can be written from Eq. (8-35), see page 457, as

P_—P.
o, = M (20a)
24,

Substituting the maximum external load P,

max

=2 kips, the minimum external load P =750 1Ib,
and Egs. (1b) and (9b) into Eq. (20a), the alternating component of the stress is

> _ 0.147(2000-750)
“ 2x0.226

= 406.53psi (20b)

Comparing the alternating stress with the mean stress and the preload stress, that is, Eqgs. (18b),
(19¢), and (20b), note that
O-LJ ¢ O-ﬂl _O-l (21a)

that is
0.407 kpsi # 89.39 kpsi — 88.496 kpsi (21b)

This indicates that the slope of the load line is not 1, see Figure 8.22, page 458. In fact, the slope
of the load line for this problem is

o 0.407

p=——t = =0.455 (22)
o, -0, 89.39-88.496

Substituting Egs. (1b), (16), (17), (18b), and (20b) into Eq. (15), the fatigue factor of safety using
the Goodman criterion of failure can be written as

- 20.6 (133 —88.496)
77 133x.0.407 +20.6(89.39 —88.496)

(23a)
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Therefore, the fatigue factor of safety using the Goodman criterion of failure is

oo 91678 _
/' 54.131+18.416

(23b)
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Solution to Problem 6.
(i) The stiffness of the spring can be written as

AF _F, . —F,.
—— __max min (1)
Ax Ax

k

The maximum and the minimum forces are specified, respectively, as

F, .. =0651bs and F_. =251bs 2)
The change in the length of the spring is
Ax=1,-I =3.5-2.25=1.251nches (3)

Substituting Egs. (2) and (3) into Eq. (1), the stiffness of the spring is
I = 65-25

=32 1bs/in 4)

The stiffness of the spring can also be written from Eq. (10-9), see page 528, (see Example 10.1,
page 534) as
d'G
k=——7F— Sa
8D’ N, (52)

Rearranging Eq. (4), the number of active coils can be written as

d'G
= 5b
“ 8Dk (b)
The spring index can be written from Eq. (10.1), see page 526, as
D
c== 6a
p (62)

Substituting the spring index C =10 and the mean coil diameter D =1.75 inches into Eq. (6a),

and rearranging, the wire diameter is

d=%=0.175in (6b)

The modulus of elasticity and the modulus of rigidity of music wire A228 with a wire diameter
d =0.1751in from Table 10-5, see page 533, respectively, are

E =28.0 Mpsi and G =11.6 Mpsi (7)
Substituting Egs. (4), (6), and (7) into Eq. (5b), the number of active coils is

0.175*x11.6x10°
Na = 3 =
8x1.75" %32

7.93 (8a)
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Therefore, the number of active coils (rounded up to the nearest quarter of a coil) is
N, =8 (8b)

For squared and grounded ends, the total number of coils can be written from Table 10-1, see page
529, as
N, =N, +2 (9a)

Substituting Eq. (8b) into Eq. (9a), the total number of coils (rounded up to the nearest quarter) is
N, =8+2 =10 coils (9b)
The solid height of the spring from Table 10-1 on page 529 is
L =dN, (10a)
Substituting Egs. (4) and (9b) into Eq. (10a), the solid height of the spring is
L =0.175x10=1.751in (10b)

(ii) The pitch of the spring wire for squared and ground ends can be written from Table 10-1, see
page 529, as

L,—-2d
p=ny (11)
The free length of the spring (see Example 10.1, page 534) can be written as
Ly=1 +x,_, (12a)
where the assembled length of the spring is given as
[, =3.5inches (12b)

The deflection of the spring at the preload F, = F, =251bs and deflection given by Eq. (4) is

Xoin “hwe 2540 07812510 (13)
ko 32

Substituting Egs. (12b) and (13) into Eq. (12a), the free length of the spring is
L,=3.5+0.78125=4.28125in (14)

Substituting the wire diameter and Egs. (8b) and (14) into Eq. (11), the pitch of the spring wire is

_4.28125-2x0.175
8

=0.49 in (15)

(iii) The alternating and the mean components of the shear stress can be written from Egs. (10.32)
and (10.33), see page 545, as
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8F D 8F D
Ta:KB[ﬁ) and Tm:KB( ﬂ'd3 j (16)
The Bergstrasser factor can be written from Eq. (10-5), see page 527, as
4C+2
= 17a
’4c-3 (172)
Substituting the given spring index C = 10 into Eq. (17a), the Bergstrasser factor is
o AxA0F2 5 (17b)
4x10-3

The alternating and the mean components of the force can be written from Egs. (10-31), see
page 545, respectively, as
F _F‘ _Fmax+Fmin

F — max min and F

18
a 2 m 2 ( )

Substituting Eq. (2) into Egs. (18), the alternating and mean components of the force, respectively,
are

Fa=65;25=201b and F;n=65J2r25=451b (19)

Substituting Eqs. (16b) and (19) into Eqgs. (16), the alternating and the mean components of the
shear stress are

7, =1.1351| Z2XLT 16 877 kpsi (20a)
7(0.175)
and
7, =1.1351| XX _ 1) 473 kpsi (20b)
7(0.175)

(iv) The fatigue factor of safety using the Gerber-Zimmerli fatigue failure criterion can be written
from Example 10-4, see page 546, as

S 21)
The ultimate shear strength of the spring material can be written from Eq. (10.30), see page 545,

as

S =067S, (22)

The ultimate tensile strength can be written from Eq. (10-14), see page 532, as
A

utzdm

(23a)
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The material specific constants for A228 music wire with a wire diameter 0.004in < d < 0.256 in
from Table 10-4, see page 532, are

A=201kpsi.in™ and m=0.145 (23b)
Substituting Egs. (23b) into Eq. (23a), the ultimate tensile strength of the A228 music wire is

201

Substituting Eq. (24) into Eq. (22), the ultimate shear strength of the A228 music wire is

S =0.67x258.795=173.393 kpsi (25)

The torsional endurance strength (that is, the Gerber ordinate intercept for the Zimmerli data for
peened springs) can be written from the equation on page 544 as

S
S, =—— 26
“1-(S,,/8,) 20

The alternating and mean components of the endurance strength for a peened spring from Eq. (10-
29), see page 544, are

S, =57.5kpsi and S, =77.5kpsi (27)
Substituting Egs. (25) and (27) into Eq. (26), the torsional endurance strength is

S, = °73 _ =71.855 kpsi (28)
1-(77.5/173.393)

The alternating component of the endurance strength can be written from page Eq. (6.48), see page
334, or from Example 10-4, see pages 545 and 546, as

2 @2 2
TSy 1] 25 (29)
25&‘6 rSSLI
where the slope of the load line is
pofe 18877 gaa (30)
T 42473

For comparison, the slope of the load line in the worked Example 10.4, see page 546, is

L2775 (31)
T 396

m

=
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Substituting Egs. (25), (28), and (30) into Eq. (29), the alternating component of the endurance
strength is

2 2 2
- (0.4444)7(173.393) 14 N+ 2(71.855) —46.1172kpsi  (32)
2(71.855) (0.4444)(173.393)

Substituting Eqgs. (20a) and (32) into Eq. (21), the fatigue factor of safety using the Gerber-
Zimmerli fatigue-failure criterion is

_46.1172

- _). 33
" 8877 (33)
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