<table>
<thead>
<tr>
<th>Lecture</th>
<th>Day</th>
<th>Date</th>
<th>Topic</th>
<th>Reading</th>
<th>Required Problems (Due Date)</th>
<th>Suggested Problems from Textbook</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>M</td>
<td>11-Jan</td>
<td>Syllabus, systems, definitions</td>
<td>1.1-1.4</td>
<td>EHW1 (19-Jan)</td>
<td>SP1 (15-Jan)</td>
</tr>
<tr>
<td>2</td>
<td>W</td>
<td>13-Jan</td>
<td>Units, specific volume, pressure</td>
<td>1.5-1.6</td>
<td>EHW2 (19-Jan)</td>
<td>SP2 (15-Jan)</td>
</tr>
<tr>
<td>3</td>
<td>F</td>
<td>15-Jan</td>
<td>Temperature, problem solving</td>
<td>1.7-1.9</td>
<td>EHW3 (19-Jan)</td>
<td>SP3 (22-Jan)</td>
</tr>
<tr>
<td>4</td>
<td>W</td>
<td>20-Jan</td>
<td>Mechanical concepts of energy, work</td>
<td>2.1-2.2.2</td>
<td>EHW4 (21-Jan)</td>
<td>SP4 (22-Jan)</td>
</tr>
<tr>
<td>5</td>
<td>F</td>
<td>22-Jan</td>
<td>Expansion/compression work, other examples of work</td>
<td>2.2.3-2.2.8</td>
<td>EHW5 (23-Jan)</td>
<td>SP5 (29-Jan)</td>
</tr>
<tr>
<td>6</td>
<td>M</td>
<td>25-Jan</td>
<td>Total energy, internal energy, heat transfer</td>
<td>2.3-2.4</td>
<td>EHW6 (26-Jan)</td>
<td>SP6 (29-Jan)</td>
</tr>
<tr>
<td>7</td>
<td>W</td>
<td>27-Jan</td>
<td>Energy balance for closed systems</td>
<td>2.5</td>
<td>EHW7 (28-Jan)</td>
<td>SP7 (29-Jan)</td>
</tr>
<tr>
<td>8</td>
<td>F</td>
<td>29-Jan</td>
<td>Energy analysis of cycles</td>
<td>2.6</td>
<td>EHW8 (30-Jan)</td>
<td>SP8 (5-Feb)</td>
</tr>
<tr>
<td>9</td>
<td>M</td>
<td>1-Feb</td>
<td>Evaluating properties</td>
<td>3.1-3.3</td>
<td>EHW9 (2-Feb)</td>
<td>SP9 (5-Feb)</td>
</tr>
<tr>
<td>10</td>
<td>W</td>
<td>3-Feb</td>
<td>Property tables</td>
<td>3.4-3.6</td>
<td>EHW10 (4-Feb)</td>
<td>SP10 (5-Feb)</td>
</tr>
<tr>
<td>11</td>
<td>F</td>
<td>5-Feb</td>
<td>Internal energy and enthalpy, energy balance</td>
<td>3.8</td>
<td>EHW11 (6-Feb)</td>
<td>SP11 (15-Feb)</td>
</tr>
<tr>
<td>12</td>
<td>M</td>
<td>8-Feb</td>
<td>Specific heats, incompressible substances</td>
<td>3.9-3.10</td>
<td>EHW12 (11-Feb)</td>
<td>SP12 (15-Feb)</td>
</tr>
<tr>
<td>13</td>
<td>T</td>
<td>9-Feb</td>
<td>EXAM 1: Covers Lectures 1 - 10, 6:30 to 7:30 pm</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>14</td>
<td>W</td>
<td>10-Feb</td>
<td>Compressibility chart and factors, ideal gas model</td>
<td>3.11-3.12</td>
<td>EHW14 (11-Feb)</td>
<td>SP14 (15-Feb)</td>
</tr>
<tr>
<td>15</td>
<td>M</td>
<td>15-Feb</td>
<td>Ideal gas properties, polytropic processes</td>
<td>3.13-3.15</td>
<td>EHW15 (16-Feb)</td>
<td>SP15 (19-Feb)</td>
</tr>
<tr>
<td>16</td>
<td>W</td>
<td>17-Feb</td>
<td>Control volume analysis (steady-state); mass conservation</td>
<td>4.1-4.3</td>
<td>EHW16 (18-Feb)</td>
<td>SP16 (19-Feb)</td>
</tr>
<tr>
<td>17</td>
<td>F</td>
<td>19-Feb</td>
<td>Conservation of energy for control volume</td>
<td>4.4-4.5</td>
<td>EHW17 (20-Feb)</td>
<td>SP17 (26-Feb)</td>
</tr>
<tr>
<td>18</td>
<td>M</td>
<td>22-Feb</td>
<td>Nozzles, diffusers</td>
<td>4.6</td>
<td>EHW18 (23-Feb)</td>
<td>SP18 (26-Feb)</td>
</tr>
<tr>
<td>19</td>
<td>W</td>
<td>24-Feb</td>
<td>Turbines, compressors, pumps</td>
<td>4.7-4.8</td>
<td>EHW 19 (25-Feb)</td>
<td>SP19 (26-Feb)</td>
</tr>
<tr>
<td>20</td>
<td>F</td>
<td>26-Feb</td>
<td>Heat exchangers, throttling devices</td>
<td>4.9-4.10</td>
<td>EHW20 (27-Feb)</td>
<td>SP20 (4-Mar)</td>
</tr>
<tr>
<td>21</td>
<td>M</td>
<td>29-Feb</td>
<td>System Integration</td>
<td>4.11</td>
<td>EHW21 (1-Mar)</td>
<td>SP21 (4-Mar)</td>
</tr>
</tbody>
</table>

Course text: Fundamentals of Engineering Thermodynamics, 8th ed., Moran, Shapiro, Boettner, and Bailey
<table>
<thead>
<tr>
<th>Week</th>
<th>Date</th>
<th>Topic</th>
<th>Reading</th>
<th>Notes</th>
</tr>
</thead>
<tbody>
<tr>
<td>22</td>
<td>W 2-Mar</td>
<td>Introducing the second law, irreversibilities</td>
<td>5.1-5.4</td>
<td>EHW22 (3-Mar) SP22 (4-Mar) 5.3, 5.5, 5.10</td>
</tr>
<tr>
<td></td>
<td>F 4-Mar</td>
<td>Thermodynamic cycles and second law</td>
<td>5.5-5.7</td>
<td>EHW23 (5-Mar) SP23 (23-Mar) 5.20, 5.36</td>
</tr>
<tr>
<td>24</td>
<td>M 7-Mar</td>
<td>Temperature scales, maximum performance measures</td>
<td>5.8-5.9</td>
<td>EHW24 (8-Mar) SP24 (23-Mar) 5.51, 5.65</td>
</tr>
<tr>
<td></td>
<td>W 9-Mar</td>
<td>Carnot cycle, Clausius inequality and significance</td>
<td>5.10-5.11</td>
<td>EHW25 (22-Mar) SP25 (23-Mar) 5.83, 5.85</td>
</tr>
<tr>
<td>26</td>
<td>W 9-Mar</td>
<td>EXAM 2: Covers Lectures 1 - 22, 8:00 to 9:00 pm</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>F 11-Mar</td>
<td>No Class Due to Exam 2</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>M 14-Mar</td>
<td>Spring Break - No Classes</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>W 16-Mar</td>
<td>Spring Break - No Classes</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>F 18-Mar</td>
<td>Spring Break - No Classes</td>
<td></td>
<td></td>
</tr>
<tr>
<td>27</td>
<td>M 21-Mar</td>
<td>Entropy as a property</td>
<td>6.1-6.2</td>
<td>EHW27 (22-Mar) SP27 (25-Mar) 6.1, 6.3</td>
</tr>
<tr>
<td></td>
<td>W 23-Mar</td>
<td>T-ds relations, incompressible substances</td>
<td>6.3-6.4</td>
<td>EHW28 (24-Mar) SP28 (25-Mar) 6.11, 6.18</td>
</tr>
<tr>
<td>29</td>
<td>F 25-Mar</td>
<td>Entropy change of ideal gases</td>
<td>6.5</td>
<td>EHW29 (26-Mar) SP29 (1-Apr) 6.21, 6.28</td>
</tr>
<tr>
<td></td>
<td>M 28-Mar</td>
<td>Internally reversible processes, closed system balance</td>
<td>6.6-6.7</td>
<td>EHW30 (29-Mar) SP30 (1-Apr) 6.51, 6.61, 6.64</td>
</tr>
<tr>
<td>31</td>
<td>W 30-Mar</td>
<td>Entropy increase principle, open system balance</td>
<td>6.8-6.10.1</td>
<td>EHW31 (31-Mar) SP31 (1-Apr) 6.82, 6.85</td>
</tr>
<tr>
<td></td>
<td>F 1-Apr</td>
<td>Applications of rate balance to open systems</td>
<td>6.10.2</td>
<td>EHW32 (2-Apr) SP32 (8-Apr) 6.95, 6.99, 6.104</td>
</tr>
<tr>
<td>33</td>
<td>M 4-Apr</td>
<td>Isentropic processes</td>
<td>6.11</td>
<td>EHW33 (5-Apr) SP33 (8-Apr) 6.122, 6.125</td>
</tr>
<tr>
<td></td>
<td>W 6-Apr</td>
<td>Isentropic efficiencies</td>
<td>6.12</td>
<td>EHW34 (7-Apr) SP34 (8-Apr) 6.134, 6.143</td>
</tr>
<tr>
<td>35</td>
<td>F 8-Apr</td>
<td>Heat transfer and work in reversible flow processes</td>
<td>6.13</td>
<td>EHW35 (9-Apr) SP35 (18-Apr) 6.174, 6.179</td>
</tr>
<tr>
<td></td>
<td>M 11-Apr</td>
<td>Vapor power systems; Rankine cycle</td>
<td>8.1-8.2</td>
<td>EHW36 (12-Apr) SP36 (18-Apr) 8.17, 8.22</td>
</tr>
<tr>
<td>37</td>
<td>T 12-Apr</td>
<td>EXAM 3: Covers Lectures 1 - 34, 8:00 to 9:00 pm</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>W 13-Apr</td>
<td>Superheat and reheat</td>
<td>8.3</td>
<td>EHW38 (14-Apr) SP38 (18-Apr) 8.29, 8.35</td>
</tr>
<tr>
<td></td>
<td>F 15-Apr</td>
<td>No Class Due to Exam 3</td>
<td></td>
<td></td>
</tr>
<tr>
<td>39</td>
<td>M 18-Apr</td>
<td>Vapor-compression refrigeration systems</td>
<td>10.1-10.2</td>
<td>EHW39 (19-Apr) SP39 (22-Apr) 10.6, 10.17</td>
</tr>
<tr>
<td>40</td>
<td>W 20-Apr</td>
<td>Heat pump systems</td>
<td>10.6</td>
<td>EHW40 (21-Apr) SP40 (22-Apr) 10.36, 10.40</td>
</tr>
<tr>
<td></td>
<td>M 25-Apr</td>
<td>Diesel cycle, Dual Cycle</td>
<td>9.3-9.4</td>
<td>EHW42 (26-Apr) SP42 (29-Apr) 9.20, 9.24</td>
</tr>
<tr>
<td>43</td>
<td>W 27-Apr</td>
<td>Brayton cycle</td>
<td>9.5-9.6</td>
<td>EHW43 (28-Apr) SP43 (29-Apr) 9.42, 9.54</td>
</tr>
<tr>
<td>44</td>
<td>F 29-Apr</td>
<td>Course review</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Final Examination: Lectures 1 - 44 Time and Location to be announced