The pressure-volume behavior for one simple model of an IC engine is composed of four steps (processes). The first process has the relationship $p v^{1.4} = \alpha$, where the initial and final specific volumes are v_1 and v_2, respectively. It is followed by $v = v_2$, $p v^{1.4} = \beta$, and $v = v_1$. The initial and final specific volumes for the third process are respectively v_2 and v_1. α and β are constants.

Calculate the moving boundary work for each of the four processes. Report answers in terms of p_1, p_2, v_1, and v_2.

Now sketch the four sequential processes on a p-v plot. Use p as the vertical axis and v as the horizontal one.