

Project name:	Design and Fabrication Long Range Oscillating Heat Pipe	Project ID:	R001
Supervisor:	Liang Pan	Number of positions:	3
Project Description:	Oscillating heat pipes favors high working efficiency and can potentially offer high peak cooling capability for high power applications. Existing manufacturing techniques allow the quick creations of complicated flow structures, however the design and testing of the oscillating heat pipes at high power and long range are not well understood. This project will assemble a team of students to work with current graduate students to design, fabricate and test long range oscillating heat pipes.		
Final Deliverables:	Report and prototype		
Option:	Discuss with advisor		
Option Information:	Options and details to be discussed with faculty advisor		
Desired Qualifications: Applicants expect to have one or more of the following capabilities. 1. Fabrication skills i machine shop2. Thermodynamics3. Heat transfer		kills in	

Project name:	Microscale 3D Printing using Parallel Writings	Project ID:	R002
Supervisor:	Liang Pan	Number of positions:	3
	Three-dimensional (3D) printing is routinely performed by	rastering writing in the po	oint-by-point
	fashion, such Stereolithography (SLA), Selective Laser Sintering (SLS), Fused Deposition		
	Modeling (FDM). Here we will assemble a team to experi	mentally implement a mic	roscale 3D
Brainet Description	printer method with software and hardware infrastructure	that can support a paralle	l writing
Project Description:	mode fro higher throughput. This is an intermediate step for a 2024 Fall semester project on		
	Microscale 3D Printing using Volumetric and Holography Methods, which will support a new		
	operation mode to directly placing 3D shapes (such as cubes, spheres, or other complex 3D		
	shapes) by using volumetric projection.		
Final Deliverables:	A working microscale 3D printer, including the hardware and control software		
Option:	Discuss with advisor		
Option Information:	Options and details to be discussed with faculty advisor		
	Applicants expect to have one of the following capabilities	s. 1. Operation of 3D print	ers2. Use of
Desired Qualifications:	CAD to create 3D geometries3. Programing4. Basic digital circuits and the use of oscilloscope		
	and other electronics. 5. Machining		

Project name:	Machining Learning Model for Prediction of Mechanical Properties of Metal Parts	Project ID:	R003	
Supervisor:	Yung Shin	Number of positions:	2	
	This study aims to establish the microstructure-property r	elationship of additively b	uilt metal	
	parts, which will contribute to the drastic reduction of process lead time and certification of			
	parts. The participating student(s) is expected to establish	sh microstructure-mechan	ical	
	property relationships by collecting scattered data in the I	iterature, processing micro	ostructure	
Drainat Departmention	images to extract microstructure information from the liter	ature and AM built sample	es, and then	
Project Description:	using a machine learning technique to capture the relation	nships between microstru	cture and	
	mechanical properties. In addition, opportunities exist to print actual tensile specimens using			
	the available facilities in the supervisor's lab, conduct heat treatment, if necessary, carry			
	out microstructure measurements using optical microscopy or scanning electron microscoy,			
	and perform mechanical testing using a universal testing machine.			
	It is expected to submit weekly reports describing the progress, findings and results of the			
Final Deliverables:	research project during the regularly scheduled meetings. A final written report is required for			
Final Deliverables:	the final grade, which shall contain a literature review, collected microstructure data, all the			
	experimental results, and analysis results.			
Option:	For credits			
Option Information:	3 credits			
Desired Qualifications:	Some background on mechanics of material with GPA higher than 3.4.			

Project name:	Realization of meta-material via 3D additive manufacturing	Project ID:	R004
Supervisor:	Yung Shin	Number of positions:	2
	Metamaterials are artificial or man-made materials that ar	e crafted to achieve phys	ical
	behaviors that are not demonstrated by the constituting material in its conventional sense.		
	They are achieved by cumulating the behavior of the unit	cell designed into the ma	cro scale
Broject Description	and thereby the effects are also translated into the macro	scale. Auxetic, acoustic,	and
Project Description:	electromagnetic metamaterials are the most pondered su	bjects in the research field	d as they
	have large applications/potential. This research is to exploit the feasibility of building different		
	metamaterials by using 3D additive manufacturing. 3D additive manufacturing provides		
	unprecedented capabilities for building complex 3D lattice	e structures from CAD dra	wings.
	It is expected to submit weekly reports describing the findings and results of the research		
Final Deliverables:	during the regularly scheduled meetings. A final written report must contain a literature review,		
Final Deliverables:	design of metal material, 3D printing of the designed strue	cture, any analysis results	and the
	experimental characterization results.		
Option:	For credits		
Option Information:	3 credits		
Desired Qualifications:	Sophomore or higher with a GPA of 3.4 or higher		

Project name:	Design,fabrication and characterization of micro/nanoscale mechanical and optical devices	Project ID:	R005
Supervisor:	Yung Shin	Number of positions:	2
	Two-photon polymerization (TPP) by a femtosecond lase	r is a unique and promine	nt additive
	manufacturing (AM) technique, which offers the capability of fabricating true 3D dimensional		
	micro/nanostructures with spatial resolution in the nanometer regime. Given the ever-longing		
	demand for complex three-dimensional microstructures fi	ne features in the semico	nductor and
Project Description:	biomedical domains, TPP presents a promising solution. This research involves the design,		
	fabrication, and characterization of optical devices such as flat lenses (metasurfaces), Fresnel		
	lenses, micro lens arrays (MLAs), photonic crystals (PCs) etc. and/or lattice structures which		
	exhibit superior mechanical properties such as super hydrophobic surfaces, mechanical		
	metamaterials, drug delivery devices etc.		
	It is expected to submit weekly reports describing the findings and results of the research		
Final Deliverables:	during the regularly scheduled meetings. A final written report is required for the final grade,		
Final Deliverables.	which must contain a literature review, design of metal material, 3D printing of the designed		
	structure, all the experimental characterization and analysis results.		
Option:	For credits		
Option Information:	3 credits		
Desired Qualifications:	Sophomore or higher standing with the GPA of 3.4 or higher.		

Project name:	FE Models for Cellular Materials	Project ID:	R006
Supervisor:	Thomas Siegmund	Number of positions:	1
Project Decorintion	Create finite element models of cellular materials. Execute such models with a FE code		
Project Description:	(ABAQUS)		
Final Deliverables:	Model files; report		
Option:	Discuss with advisor		
Option Information:	Options and details to be discussed with faculty advisor		
Desired Qualifications:	experience with FEA, ABAQUS, ME 489		

Project name:	Porous Materials - Strength and Toughness	Project ID:	R007
Supervisor:	Thomas Siegmund	Number of positions:	1
Project Description:	Conduct manufacture, microstructure analysis, and mechanical testing on brittle porous		
Project Description.	materials.		
Final Deliverables:	Samples, protocols		
Option:	Discuss with advisor		
Option Information:	Options and details to be discussed with faculty advisor		
Desired Qualifications:	ME 323		

Project name:	Standard test structure and protocols for in space manufacturing	Project ID:	R008
Supervisor:	Luz Sotelo, Salil Bapat, Michael Sealy, Ajay Malshe	Number of positions:	4
	Researchers will work on collaborative projects involving: 1) Design, manufacturing, and		
	characterization of a test or set of test structures for in-space manufacturing; 2) Space-viable		
Project Description:	test protocols development and ground demonstrations for relevant destructive and		
Project Description.	nondestructive testing methods; 3) Multi-material manufa	cturing of regolith-metal a	nd
	regolith-polymer samples using a variety of additive manu	ufacturing; 4) Integration c	f analytical,
	numerical, and finite element modeling and analysis of test structure performance with		
	experimental data.		
	1) Documentation: 1 final written report and presentation*, documented test structure(s) design		
	and CAD files, test structure samples, experimental/test protocols, data collected, documented		
Final Deliverables:	data analysis scripts. * Researchers will use PPT slides to share and discuss weekly progress.		
Final Deliverables.	The cumulative weekly presentation slides will be part of the final presentation after the		
	research period. 2)Dissemination: Researchers are encouraged to deliver a technical oral or		
	poster presentation		
Option:	Discuss with advisor		
Option Information:	Options and details to be discussed with faculty advisor		
	1) ME 263 and ME 323 or equivalent. 2) Experience in ONE OR MORE of the following: a)		
Desired Qualifications:	Manufacturing and additive manufacturing processes; b) Materials testing and		
	characterization; c) CAD, programming, and DAQ; d) Analytical/FE modeling		

Project name:	Mechanics of battery materials and conducting polymers	Project ID:	R009
Supervisor:	Kejie Zhao	Number of positions:	3
Project Description:	The undergrad research projects will work on mechanics modeling and experimental		
Project Description:	characterization of battery materials and conducting polymers.		
Final Deliverables:	Literature review and a group presentation		
Option:	Discuss with advisor		
Option Information:	Options and details to be discussed with faculty advisor		
Desired Qualifications:	Interested in mechanics of materials; self-motivated		

Project name:	Scientific Machine Learning	Project ID:	R010	
Supervisor:	Carlos M Corvalan	Number of positions:	2	
	The intersection of data-driven methods, machine learnin	g, and classical engineeri	ng is a	
	rapidly growing field with transformative potential. Machine learning provides a powerful			
	framework that can enhance and even transform enginee	ring research and industri	al	
Project Description:	applications. This project will bring together machine learning and engineering mathema			
	integrate modeling and simulation of dynamical systems with modern methods in data science.			
	Students will discuss and apply recent advances in scientific computing and machine learning			
	that enable data-driven discovery to be applied to a diverse range of engineering systems.		ystems.	
Final Deliverables:	Working computer codes leveraging machine-learning to solve engineering problems.			
Option:	For credits			
Option Information:	3 credits			
Desired Qualifications:	Background in linear algebra, differential equations and scientific computing are desirable.			

Project name:	active rheology	Project ID:	R011
Supervisor:	Arezoo Ardekani	Number of positions:	4
Project Description:	Microrheology has emerged in the past few decades as an effective technique forunderstanding the mechanical properties of various materials and systems. This project		
	seeks to develop a form of active microrheology to characterize the viscoelastic properties of biological matter and cells.		
Final Deliverables:	presentation, report, prototype		
Option:	For credits		
Option Information:	3 credits		
Desired Qualifications:	/E 263		

Project name:	Manufacturing and Controlling Arrays of Polymer-Based Actuators	Project ID:	R012
Supervisor:	Alex Chortos	Number of positions:	2
Project Description:	Polymer-based actuators can be fabricated over large areas in complex form factors, making them suitable for applications in human-machine interfaces and large-area devices. Creating and operating these devices is an interdisciplinary challenge that includes understanding the materials, mechanics, and controls, providing opportunities to get involved in one or more aspect of the system development.		
Final Deliverables:	Final report (~6-10 pages) on research accomplishments.		
Option:	For credits		
Option Information:	3 credits		
Desired Qualifications:	Desirable expertise include experience with 3D printing, polymers, or electronics.		

Project name:	Synthesis of novel high-temperature oxidation resistant transition metal carbides	Project ID:	R013
Supervisor:	Babak Anasori	Number of positions:	2
Project Description:	To apply materials in extreme environments, such as extreme temperatures (>3000 ŰC) or		
	extreme reactive environments (oxidation-based material ablation) for modern hypersonics or		
	extraterrestrial exploration requires today's engineers and scientists to design materials		
	with careful attention paid to every atom. In the Anasori Lab, we are exploring novel synthetic		
	methods to tailor ternary transition metal carbides, known as MAX phases, for compositions		
	which survive the most extreme conditions possible in our universe. The students in this		
	project will be working with graduate students and postdocs to get fully trained in materials		
	synthesis and characterizations and be able to conduct the research. This summer research		
	experience will be split between Purdue University in Indianapolis and West Lafayette to 1)		
	synthesize the precursor phases and 2) explore their high-temperature properties.		
Final Deliverables:	A final report on the progress of the materials synthesis and characterization.		
Option:	For credits		
Option Information:	3 credits		
	This project will be heavily done through hands-on experience in a wet chemistry lab, so the		
Desired Qualifications:	applicants should either have experience with or be willing to learn materials synthesis and		
	characterization techniques. We will look for applicants with strong		

Project name:	MSRAL Research	Project ID:	R014
Supervisor:	Dave Cappelleri	Number of positions:	2
	The Multi-Scale Robotics & amp; Automation Lab (MSRAL) performs cutting-edge research on		
Project Description:	robotic and automation systems at various length scales: macro-scale (cm to m), meso-scale		
	(~100's of μm to a few mm's), and micro-scale (10's of μm to 100's of μm.		
	MSRAL has projects on multi-scale robotic manipulation, automation, and assembly, mobile		
	micro robotics, micro aerial and ground vehicle design & amp; control, medical robotics and		
	devices, agricultural robotics, and space robotics. See more		
	here:https://youtu.be/b-Ge1tEr_DQ		
Final Deliverables:	Final report; Project dependent deliverables may include a working prototype/demonstration		
Option:	For credits		
Option Information:	3 credits		
Desired Qualifications:	Junior standing or higher; Experience with robotics, mechantronics, 3D printing, electronics,		
	and programming is preferred.		

Project name:	Synthesis of novel two-dimensional MXenes and their colloidal stability in green solvents	Project ID:	R015
Supervisor:	Babak Anasori	Number of positions:	2
	Scaling up two-dimensional MXenes' production for diverse applications necessitates the		
	development of stable colloidal dispersions. By conducting experiments to understand the		
Project Description:	dispersion of MXenes in different green solvents, we aim to synthesize novel MXenes and		
	investigate their colloidal stability using UV-Vis-NIR spectroscopy. To fundamentally		
	understand the stability of MXenes in a library of green solvents, our strategy involves		
	designing a systematic study over time and elevated temperatures (~ 80 ŰC). In Anasori Lab,		
	we are dedicated to exploring innovative approaches for the novel MXene synthesis and		
	studying their properties. This summer research opportunity will involve a combination of		
	activities, including synthesizing novel MXenes and investigating their colloidal stability in		
	different green solvents.		
Final Deliverables:	A final report on the progress of the materials synthesis and characterization.		
Option:	For credits		
Option Information:	3 credits		
Desired Qualifications:	This project requires hands-on experience in a wet chemistry laboratory. Candidates should		
Desired Qualifications.	have experience in materials synthesis and characterization techniques or be willing to learn.		

Project name:	Efficient and sustainable water technology	Project ID:	R016
Supervisor:	David Warsinger	Number of positions:	3
	Water and energy are tightly linked resources that must both become renewable for a		
	successful future. However, today, water and energy res	ources are often in conflic	t with one
	another, especially related to impacts on electric grids. Further, advances in nanotechnology,		
	material science and artificial intelligence allow for new avenues to improve the widespread		
	implementation of desalination and water purification technology. Our lab's project aims to		
Project Description:	explore nanofabricated membranes, light-driven reactions, artificial intelligence control		
	algorithms, and thermodynamic optimization of systems. Our projects include hybrids of		
	reverse osmosis desalination with renewable energy (solar, wind, and hydro), as well as other		
	topics such as filtration, water treatment, and water vapor harvesting. The student(s) will be		
	responsible for fabricating membranes, building hydraulic systems, modeling thermal fluid		
	phenomenon, analyzing data, and/or implementing control strategies in novel system		
	configurations. More information here: www.warsinger.com		
	All students will be required to read relevant, peer-reviewed literature and keep a notebook or		
Final Deliverables:	log of weekly research progress. At the end of the semester or term, each student will present		
	a talk or poster on their results. Student efforts will contribute data, graphics, and efforts		
	towards scientific publications.		
Option:	For credits		
Option Information:	3 credits		
	Applicants should have an interest in thermodynamics, water treatment, and sustainability.		
Desired Qualifications:	Applicants with experience in some (not all) of the following are preferred: experimental design		
	and prototyping, manufacturing, Python, LabView, EES, MATLAB, 3D CA		

Project name:	Research in laser-based manufacturing and materials processing	Project ID:	R017
Supervisor:	Benxin Wu	Number of positions:	3
	Students are expected to perform work in the field of laser-based manufacturing and materials		
Project Description:	processing. A student may be involved in one or multiple topics in laser-based additive and/or		
	subtractive manufacturing.		
Final Deliverables:	Students will be evaluated based on the quantity, quality and difficulty of the work performed.		
	The exact form of deliverables depends on the actual topic(s) in which the student is involved.		
	Students can choose "For credit" (with a flexible number of credits) or		
	"Volunteer" option.		
Option:	For credits		
Option Information:	3 credits		
Desired Qualifications:	Good CAD, hands-on, material characterization and/or machine shop capabilities, etc.		

Project Name:	Measurements of Corn Damage Model	Project ID:	
	Properties		R018
Supervisor:	Carl Wassgren	Number of Positions	1
Project Description:	The objective of this project is to measure properties used in corn kernel damage		
	models. Approximately 10% of corn kernels are lost due to mechanical damage		
	during harvesting and handling. To reduce this loss, damage models have been		
	integrated into Discrete Element Method (DEN	A) models of harvesting	and handling
	equipment. Calibration experiments are requi	•	
	parameters into these models. The student w		
	the compression and impact damage paramet		-
	moisture contents. The experiments will involve conditioning the kernels to a		
	particular moisture content, measuring the compaction damage parameters using a		
	materials testing system, and measuring the in		-
	rotary impact tester. A large number of repeat experiments are needed to obtain		
	good statistical data. The student will receive training on all of the required		
	equipment and methods for analyzing the resulting data. The experiments will be		
	performed in the ABE Building. These data will ultimately be used in DEM		
Final Deliverables:	simulations for predicting damage in combine-harvesting equipment.		
Tillal Deliverables.	The project deliverables include: a presentation summarizing the project procedures and results and the measured data. The student will also be expected to		
	participate in weekly research group meetings where they'll provide short updates		
	$(\sim 5 - 10 \text{ minutes})$ on their work.		
Weekly Working Hours	9 h/wk		
For Credits/Pay	For credit: 3 cr		
Desired Qualifications	≥ second semester sophomore standing; interest in experimental work; good		
	communication skills; GPA > 3.0	•	

Project Name:	Performance of a Continuous Shear Gap Granulator	Project ID:	R019
Supervisor:		Number of Positions	1
Supervisor: Project Description:	Carl WassgrenNumber of Positions1The objective of this project is to investigate the performance of and potential improve the design of a novel continuous shear gap wet granulator. Wet granulation is a common unit operation in the production of particulate-based products such as pharmaceuticals, food products, laundry detergents, agricultural fertilizers, and other chemical products. In wet granulation, a liquid is mixed with a dry powder to form granules, which generally have better flow properties and are less susceptable to dusting and segregation. Often the wet granulation process is 		
	Integrate drive motors on the granulator (some motor control programming will be needed). (2) Perform granulation experiments relating operating parameters (feed rate, rotor speed, liquid feed, and formulation characteristics) to granule characteristics (size and shape distributions). (3) Make design modifications, if needed, to improve the C-SGG performance. (4) Present the C-SGG design and performance with industry visitors. The student will receive training for making granule characterization measurements.		
Final Deliverables:	The project deliverables include: a presentation procedures and results and the measured data participate in weekly research group meetings (~5 – 10 minutes) on their work.	a. The student will also b	e expected to
Weekly Working Hours	9 h/wk		
For Credits/Pay	For credit: 3 cr		
Desired Qualifications	≥ second semester sophomore standing; inter- communication skills; GPA > 3.0	est in experimental work	<; good