

Project name:	Mechanical design of wave rotor combustor turbine	Project ID:	R001 - Indy	
Supervisor:	Razi Nalim	Number of positions:	3	
	The Combustion and Propulsion Research Lab in Indianapolis has been pioneering research			
	on the wave rotor pressure-gain combustor for many years. Graduate students are working on			
Project Description:	technology development and fundamental studies. The undergraduate students would support			
	this effort with mechanical design skills, including CADCAM, component design, manufacturing			
	drawings, and some finite-element analysis.			
Final Deliverables:	Design reports and drawings			
Option:	For credits			
Option Information:	1 credits			
Desired Qualifications:	A or B in thermodynamics. Preferably experience in CAD and FEA.			

Project name:	Energy Storage Analytics	Project ID:	R002	
Supervisor:	Partha P. Mukherjee	Number of positions:	4	
	Lithium ion (Li-ion) batteries are ubiquitous. Thermal safety and degradation characteristics of			
Broject Description:	these systems are critical toward safer and high-performance batteries for electric vehicles. As			
Project Description.	part of this research, data-driven analytics of experimental and simulated performance under			
	normal and anomalous operating conditions of Li-ion cells will be performed.			
Final Dolivorables:	The final deliverable will be one end-of-semester research report (based on weekly progress			
Final Deliverables.	presentations and updates) and one final presentation.			
Option:	For credits			
Option Information:	3 credits			
Desired Qualifications:	Strong analytical skill and desire to learn new experimental and modeling/analysis tools.			

Project name:	Ecosystem mapping and valuestream mapping for truck and bus transportation	Project ID:	R003 - Indy
Supervisor:	Razi Nalim	Number of positions:	2
	The Center for Electrified & amp; Automated Trucking in I	ndianapolis is working to I	oring
	industries in various sectors related to freight and public transportation to collaborate on		
Drainat Departmention	research in electrification and automation. Undergraduate	e students will assist the d	irector in
Project Description:	learning about the value contributions and needs of businesses in this sphere, particularly the		
	value that companies would gain from research and workforce development. The engineering		
	students will be advised by business and engineering faculty members.		
Final Dalivarables	Database of company revenue potential and workforce needs related to truck and bus		
Final Deliverables:	transportation.		
Option:	Discuss with advisor		
Option Information:	Options and details to be discussed with faculty advisor		
Desired Qualifications:	Broad interests in electrification, automation, transportation, and digital technologies		

Project name:	Comparative study of arterial compliance	Project ID:	R004 - Indy
Supervisor:	Huidan (Whitney) Yu	Number of positions:	4
	Compliance tests will be conducted on (i) human/animal arteries, (ii) polytetrafluoroethylene		
Project Description:	(PTFE) grafts, and (iii) 3D-printed grafts within a developed mock circulation loop. The goal of		
	the project is to identify novel elastic polymers that more closely replicate the compliance of		
	native human arteries.		
Final Deliverables:	Biweekly report and meeting for progress. Experimental results that are publishable		
Option:	Volunteer		
Option Information:	Details to be discussed with faculty advisor		
Desired Qualifications:	GPA 3.0 and above. Physically located in Indianapolis campus.		

Project name:	Deep-learning-automated 3-D arterial construction based on Ultrasound B-mode images	Project ID:	R005 - Indy
Supervisor:	Huidan (Whitney) Yu	Number of positions:	2
Project Description:	Matlab algorithms will be developed to enable the 3-D construction of duplex ultrasound (DUS)		
	B-mode images for diagnosing the local morphological abnormalities of diseased arterial		
	systems. Rigorous validation and uncertainty quantification will demonstrate the equivalence of		
	3-D construction from DUS and CTA (computed tomography angiography) images.		
Final Deliverables:	Biweekly report and meeting for progress. Publishable results		
Option:	Volunteer		
Option Information:	Details to be discussed with faculty advisor		
Desired Qualifications:	GPA 3.2 and above. Good experience with Matlab coding.		

Project name:	Analysis of a prototype two-phase flow expansion turbine	Project ID:	R006
Supervisor:	Eckhard A. Groll	Number of positions:	3
	Continuation of a fall 2025 project to commission a new test stand for a two-phase flow		
	expansion turbine to be used in a CO2 refrigeration system. Task include finalizing the data		
Project Description	acquisition and data reduction procedure, conducting shake-down tests, conducting		
Project Description:	performance tests and corresponding reporting. This will be a 3-credit hour independent		
	project requiring approximately 12 hours of laboratory work per week during the semester and		
	students will receive a letter grade for this effort. Student	s can use this as ME/tech	elective
	credits.		
Final Dalivarables	Weekly PowerPoint presentations summarizing recent progress and future tasks. Final report		
Fillal Deliverables.	and final presentation at the end of the semester.		
Option:	For credits		
Option Information:	3 credits		
Desired Qualifications:	Minimum of junior standing in ME (completion of 5 semesters at Purdue by Dec. 2024).		

Project name:	Parametric Study of Oscillating Heat Pipes	Project ID:	R007
Supervisor:	Liang Pan	Number of positions:	4
	Oscillating heat pipes favors high working efficiency and can potentially offer high peak cooling		
	capability for high power applications. Existing manufacturing techniques allow the quick		
Broject Description	creations of complicated flow structures, however the des	sign and testing of the osc	illating heat
Project Description.	pipes are not currently implemented at high heating powers with reconfigurable shapes. This		
	project will assemble a team of students to work with current graduate students to design,		
	fabricate and test the performance of oscillating heat pipes under different use configurations.		
Final Deliverables:	Fabricated heat pipes and testing results.		
Option:	Discuss with advisor		
Option Information:	Options and details to be discussed with faculty advisor		
Desired Qualifications	Applicants expect to have one or more of the following capabilities. 1. Fabrication skills in		
Desired Qualifications:	machine shop2. Use of CAD software3. Labview programing4. Thermodynamics and Heat		
	transfer		

Project name:	Microscale 3D Printing using Volumetric Lithographic Methods	Project ID:	R008
Supervisor:	Liang Pan	Number of positions:	3
	Three-dimensional (3D) printing is routinely performed by	writing 1D shapes (point-	·by-point) or
	2D shapes (layer-by-layer), using different methods, such Stereolithography (SLA), Selective		
	Laser Sintering (SLS), Fused Deposition Modeling (FDM), and Digital Light Process (DLP).		
Drainat Departmention	Here we will assemble a team to experimentally impleme	nt a microscale 3D printer	method
Project Description:	with software and hardware infrastructure that can support a new operation mode to placing		
	3D shapes (such as cubes, spheres, or other complex 3D shapes) by using volumetric		
	lithographic method. This is the continuation for project from previous years. Participants will		
	learn the previous development and build upon existing infrastructures.		
Final Deliverables:	A working microscale 3D printer, including the hardware and control software		
Option:	Discuss with advisor		
Option Information:	Options and details to be discussed with faculty advisor		
	Applicants expect to have one of the following capabilities. 1. Operation of 3D printers2. Use of		
Desired Qualifications:	CAD to create 3D geometries3. Programing4. Basic digital circuits and the use of oscilloscope		
	and other electronics. 5. Machining		

Project name:	Advanced materials	Project ID:	R009
Supervisor:	Jong Hyun Choi	Number of positions:	3
	This project aims to develop programmable nanostructure	es and reconfigurable/swi	tchable
	systems. We use two distinct approaches.1. DNA nanotechnologyIn this approach we use		
	synthetic DNA molecules as engineering building blocks.	We design DNA molecule	es that can
Project Decorintion	be assembled into computer-designed nanostructures for specific functions. We study		
Project Description.	mechanical properties of the DNA assemblies.2. 2D materialsTwo-dimensional transition metal		
	chalcogenide semiconductors (e.g., MoS2 and WSe2) are emerging materials with		
	extraordinary physical properties including strong photoluminescence and conductivity. We		
	develop ovel strategies to modulate and control their optoelectronic properties.		
Final Deliverables:	Monthly reports and final presentation		
Option:	For credits		
Option Information:	3 credits		
Desired Qualifications:	Passionate juniors with good academic standing		

Project name:	Fabrication and characterization of micro/nanoscale mechanical and optical devices	Project ID:	R010
Supervisor:	Yung C Shin	Number of positions:	2
	Two-photon polymerization (TPP) is a unique and promin	ent additive manufacturin	g (AM)
	technique that offers the capability of fabricating true 3D dimensional micro/nanostructures		
	with spatial resolution in the nanometer regime using a femtosecond laser. Given the		
Project Description:	ever-longing demand for complex three-dimensional micr	oscale structures with fine	e features in
	the semiconductor and biomedical domains, TPP presents an optimal solution. This research		
	involves the design, fabrication, and characterization of optical devices such as flat lenses		
	(metasurfaces), diffractive optical elements, Fresnel lenses, micro lens arrays (MLAs),		
	photonic crystals (PCs) etc.		
	It is expected to submit weekly reports describing the findings and results of the researc		
Final Dalivarables	during the regularly scheduled meetings. A final written report is required for the final grade,		
Fillal Deliverables.	which must contain a literature review, design of metal material, 3D printing of the designed		
	structure, all the experimental characterization and analysis results.		
Option:	For credits		
Option Information:	3 credits		
Desired Qualifications:	Sophomore or higher standing with a minimum GPA of 3.4		

Project name:	Additive manufacturing of soft materials by ink-jet 3D printing	Project ID:	R011
Supervisor:	Yung C Shin	Number of positions:	1
	This study is to explore the additive manufacturing capab	ilities of novel soft materia	als such as
	different polymers, metal + polymers or ceramic + polymers, using a 3D inkjet type printer		
Project Description:	available in the supervisor's lab. The student is expected to optimize the process		
	parameters to build successful samples using the selected materials and characterize their		
	geometric accuracy, microstructural and mechanical properties.		
Final Dalivarables	Weekly reports to show the summary of each work. A final written report is required for the		
Fillal Deliverables.	final grade, which contains all the experimental results, collected testing results and analysis		
	results.		
Option:	For credits		
Option Information:	3 credits		
Desired Qualifications:	Sophomore or higher standing with the minimum GPA of 3.4		

Project name:	Realization of meta-material via 3D additive manufacturing	Project ID:	R012
Supervisor:	Yung C Shin	Number of positions:	2
	Metamaterials are artificial or man-made materials that a	e crafted to achieve phys	ical
	behaviors that are not demonstrated by the constituting material in its conventional sense.		
	They are achieved by cumulating the behavior of the unit cell designed into the macro scale		
Project Description:	and thereby the effects are also translated into the macro	scale. This research is to)
	experimentally exploit the feasibility of building different metamaterials by using 3D additive		
	manufacturing. Various analysis tools will be used to design meta materials and the final		
	design will be built by 3D printing and tested.		
	It is expected to submit weekly reports describing the findings and results of the research		
Final Dolivorables:	during the regularly scheduled meetings. A final written report is required for the final grade,		
Fillal Deliverables.	which must contain a literature review, design of metal material, 3D printing of the designed		
	structure, all the experimental characterization and analysis results.		
Option:	For credits		
Option Information:	3 credits		
Desired Qualifications:	Sophomore or higher standing with a minimum GPA of 3.4		

Project name:	Data-driven modeling of microstructure- properties relationships for additively manufactured metal parts	Project ID:	R013
Supervisor:	Yung C Shin	Number of positions:	2
	This study is to investigate the mechanical properties of metal alloy parts built by various metal		
	additive manufacturing (AM) processes in terms of the resultant microstructure and to		
	establish a data-driven model between the microstructure and mechanical properties, ,which		
Project Description:	will contribute to the drastic reduction of process lead time and certification of parts. In		
	addition, opportunities exist to print actual metal tensile s	pecimens using the availa	ble AM
	facilities on campus, conduct heat treatment, if necessary, carry out microstructure		
	measurements, and perform mechanical testing using a universal testing machine in the		
	supervisor's lab.		
	It is expected to submit weekly reports describing the progress, findings and results of the		
Final Deliverables:	research project during the regularly scheduled meetings. A final written report is required for		
i mai Denverables.	the final grade, which shall contain a literature review, collected microstructure data, all the		
	experimental results, and analysis results.		
Option:	For credits		
Option Information:	0 credits		
Desired Qualifications	Junior or higher standing with a minimum GPA of 3.5 with the mechanics of material		
Desired Qualifications:	background.		

Project name:	Mechanical Engineering Education Research	Project ID:	R014	
Supervisor:	Eric Holloway	Number of positions:	2	
	Are you interested in how engineers are educated and the	e research behind it? Que	stions such	
	as how to measure and assess student learning, what are measures of student success, and			
	how are students prepared to enter the workforce? I am v	vorking on several quantit	ative and	
	qualitative projects assessing student learning and outcomes in Mechanical Engineering and			
Project Description:	other engineering disciplines to understand how students are being prepared for professional			
	practice. Our team needs ME undergraduates who are considering grad school, are interested			
	in educational issues, have excellent skills in MATLAB and Excel, and have open minds to			
	learn about educational research methods! Projects include assessing sophomore success			
	metrics, assessing students' professional skills, and assessing learning in makerspaces,			
	among others.			
The final deliverables will depend on the qualifications of the applicants and which		the applicants and which	project	
Final Deliverables:	students are assigned to. Details will be worked out at the start of the semester.			
Option:	For credits			
Option Information:	3 credits			
Desired Qualifications	ME junior or senior; Prefer students who are seriously considering graduate school. Will only			
Desired Qualifications:	consider students who can commit to working with our team both Spring '25 and Fall '25			
	semesters			

Project name:	Engine Test Cell Research	Project ID:	R015
Supervisor:	Eric Holloway	Number of positions:	2
	Our team needs assistance from highly qualified ME und	ergraduate students intere	sted in
	working on diesel and natural gas engine research at Herrick Labs. This position will work with		
	a team of faculty, graduate students, and undergraduates to accomplish a range of activities at		
Broject Description	Herrick Labs, including engine experiments, engine and t	est cell maintenance, data	à
Project Description:	processing, troubleshooting, and other activities supporting multiple research platforms. The		
	undergraduates typically perform a mix of hands-on activities on the engine and in the test cell,		
	as well as assisting with CAD, MATLAB scripts, GT-Power modeling, and assisting the faculty		
	and grad students with multiple engine/test cell tasks.		
Final Dalivarables	The final deliverables will depend on the qualifications of the applicants and which project		
Fillal Deliverables.	students are assigned to. Details will be worked out at the start of the semester.		
Option:	For credits		
Option Information:	2 credits		
	ME junior or senior. Prefer students who are seriously considering graduate school. Will only		
Desired Qualifications:	consider students who can commit to working with our team both Spring '25 and Fall '25		
	semesters. Ideal candidates will have prior experience with engines.		

Project name:	MSRAL Research	Project ID:	R016
Supervisor:	Dave Cappelleri	Number of positions:	3
	The Multi-Scale Robotics & amp; Automation Lab (MSRA	_, www.multiscalerobotics	.org)
	performs cutting-edge research on robotic and automation systems at various length scales:		
	macro-scale (cm to m), meso-scale (~100's of μm to a few mm's), and micro-scale		
Project Description:	(10's of μm to 100's of μm. MSRAL has projects on multi-scale robotic		
	manipulation, automation, and assembly, mobile micro robotics, micro aerial and ground		
	vehicle design & amp; control, medical robotics and devices, agricultural robotics, and space		
	robotics. See more here:https://youtu.be/b-Ge1tEr_DQ		
Final Deliverables:	Final report; Project dependent deliverables may include a working prototype/demonstration		
Option:	For credits		
Option Information:	3 credits		
Desired Qualifications	Junior standing or higher; Experience with robotics, mechatronics, 3D printing, electronics, and		
Desired Qualifications:	programming is preferred.		

Project name:	Thermometers, Strain Gauges and Defect Detectors for Semiconductors using Light	Project ID:	R017	
Supervisor:	Thomas Beechem	Number of positions:	3	
	Who we areâ€l Specere is a latin word that means "t	o look or behold.― That	's what	
	we do. We look, explore, and examine different ways to: (1) move energy with light and (2) get			
	information from light. More specifically, we are a light lab employing infrared physics to create			
	spectroscopic, thermal, and sensing solutions.Research Topic, Semiconductor Sensing:			
	Semiconductor chips are some of the most technologically advanced machines humanity has			
	ever made. Like any complex machine, they break. Met	nods for predicting where	they will	
	break and why they have broken are therefore necessary	. You will help us make th	ıe	
	thermometers, strain gauges, and "defect detectorsâ	ۥ that are up to the task	using some	
Project Description:	of the world's most advanced semiconductor characterization tools that we develop here			
	at Purdue.What' You'II Do: Team members will be responsible for performing			
	spectroscopic measurements of next generation semiconductor materials, devices, and			
	packages. Specifically, you will use Raman (sounds like but is not the noodle) and			
	photoluminescence (fancy for glow in the dark) to image the temperature, stress, and			
	presence of defects in everything from commercial logic chips made by Intel to materials being			
	considered for next generation memory devices. Direct mentoring from Dr. B will build your			
	skills in advanced spectroscopic tools (Raman, photoluminescence), coding, technical			
	communication and professional development. In addition, you will have the chance to			
	participate in writing journal articles and pursuing patents	based on your work.		
Final Deliverables:	Group Presentation outlining technical progress with accompanying "meeting slide― deck			
Tinai Denverables.	outlining research progress through term.			
Option:	For credits			
Option Information:	3 credits			
Desired Qualifications	We look for motivated and hard-working undergraduates	having both strong aspira	tions for	
Desired Qualifications:	post-graduate studies as well as those that are just consi	dering the possibility of gr	ad school.	

Project name:	Machine learning for enhanced industrial and biological fluid dynamics	Project ID:	R018
Supervisor:	Carlos M Corvalan	Number of positions:	3
	This research will study the integration of Machine Learni	ng (ML) into fluid mechan	icsresearch.
	The project aims to leverage the vast data generated by experiments and simulations to gain		
	deeper insights, predict, and optimize fluid flow systems.	The researchobjectives in	clude:
	Analyzing the strengths and limitations of ML in the conte	xt of fluidmechanics resea	arch.
Dreiget Decerintian	Emulate the learning mechanisms employed by biologica	l systems tomanipulate flu	id flow and
Project Description:	translate these insights into novel strategies and optimizationalgorithms for artificial systems		
	through the application of machine learning and data-drivenapproaches. Leverage the feature		
	extraction capabilities of autoencoders to developefficient, lower-dimensional representations		
	of high-fidelity fluid dynamics systems, enablingthe creation of compact and computationally		
	affordable reduced-order models for industrialand biological applications.		
Final Deliverables:	Develop working computer codes that leverage machine learning to solve engineering		
	problems		
Option:	For credits		
Option Information:	3 credits		
Desired Qualifications:	Background in linear algebra, differential equations and scientific computing are desirable		

Project name:	Biotech	Project ID:	R019
Supervisor:	Euiwon Bae	Number of positions:	2
	Applied optics is looking for UG students who are interes	ted in developing biosens	ors. Project
Droiget Decerintion	will include polyacrylamide gel fabrication, Rheometer gel stiffness characterization,		
Project Description:	fluorescence imaging, and some level of cell culture (under supervision) and analysis. Part of		
	the project involves MATLAB coding and analyzing fluorescence images captured from the		
	microscope.		
Final Dalivarables	Weekly meeting and powerpoint updates is required. Final deliverables are 1) final report an 2)		
Final Deliverables:	final prototype (depends on the progress)		
Option:	For credits		
Option Information:	3 credits		
Desired Qualifications:	Students who can work as a team; typically have 2-3 UG students work around everyone's		
	class schedule.		

Project name:	Open-source light scattering simulation	Project ID:	R020
Supervisor:	Euiwon Bae	Number of positions:	2
	Any incoming photons on an object can be absorbed, tran	nsmitted, or scattered. Sca	attering is a
	well-known phenomenon leveraged in diverse fields such as biology, engineering, and		
	manufacturing. The main aim of the current project is to utilize the open-source code from the		
Project Description:	National Institute of Standards and Technology (NIST) which is a C++ class library developed		
	by the sensor science division of NIST to enhance the computational capability of elastic light		
	scattering-based defect detection devices which are widely used in the process of production		
	of chips and in quality control of microfabrication.		
Final Deliverables	-Weekly meeting updates in PPT format-Using the original open-source code, any updates		
rinal Deliverables.	from the code should be submitted-Final report at the end of the semester		
Option:	Discuss with advisor		
Option Information:	Options and details to be discussed with faculty advisor		
Desired Qualifications:	Having some programing experience is preferred but if you are willing to learn, that is also fine.		

Project name:	Application of Machine Learning Algorithms to the Structural Analysis of mechanical and aerospace systems	Project ID:	R021
Supervisor:	Fabio Semperlotti	Number of positions:	4
	In recent years, machine learning and artificial intelligence	e algorithms have been ra	apidly
	expanding to the computational mechanics world. They offer the possibility to perform very		
	challenging computations that would otherwise be beyond reach for more classical methods		
	based on the numerical solution of differential equations.	The project will involve the	÷
Project Description:	development and numerical implementation of machine learning algorithms to simulate the		
	response of structural and multiphysics systems in the static and dynamic regimes. You will		
	acquire the following knowledge: basic knowledge of neural network architectures; basic skills		
	for the simulation of neural networks (writing and executing simple codes); basic theoretical		
	and numerical skills for the static and dynamic analysis of structural systems.		
Final report summarizing the models developed and the numerical results obtained.			. Original
Final Deliverables:	results of sufficient impact will be expanded in a technical publications (either conference or		
	journal).		
Option:	For credits		
Option Information:	3 credits		
Desired Auglifications:	Juniors and seniors. Interest in solid mechanics, dynamics, and programming. Helpful skills:		
	Matlab, Python, Finite Elements.		

Project name:	Viscoelastic contact mechanics analysis coding in Pythor	Project ID:	R022
Supervisor:	Ryan Wagner	Number of positions:	3
	The contact between two bodies can be analyzed by diffe	erent contact mechanics m	nodels that
	describe the evolution of force, displacement, stress, and strain. Depending on the loading		
	rate, area of contact, and magnitude of applied force, diffe	erent physical processes	can
	dominate the response. For low forces and soft materials	both adhesive forces (i.e	. van der
Draiget Description	walls interactions) and viscoelastic forces (i.e. force prope	ortional to velocity) are im	portant.
Project Description:	Attard's method is a rigorous contact mechanics model that includes both adhesive and		
	viscoelastic forces. However, Attard's method is computationally difficult to solve as it		
	involves a coupled series of partial differential equations	hat lack an exact solution	. In this
	project we will work to implement a computationally efficient solutions to Attard's method		
	in the python programing language. This code will be opt	imized to be easily under	stood and
	then shared in a public code repository.		
Final Deliverables:	Written and oral report		
Option:	For credits		
Option Information:	3 credits		
Desired Qualifications:	Interest in program and/or structural mechanics		

Project name:	Microscale heat flux analysis through a sharp surface coupled tip	Project ID:	R023
Supervisor:	Ryan Wagner	Number of positions:	3
	Tip based nanometer scale sensing and manufacturing is	a basis for various micro	scopy and
	lithography techniques. In this project we will explore via	a simulations and experim	ents the
	transport of heat through a sharp nanometer scale tip.	Simulations will be carried	out using
	the finite element method in COMSOL. Experiments will	be performed on an atom	ic force
Project Description:	microscopy system that is equipped with a heating laser.	The goal of the project is	s to better
	understand the spatial and temporal distribution of tempe	rature within the tip and s	ample as a
	function of heating conditions, environmental conditions,	and sample properties.	The heated
	tip can then be leveraged to achieve thermomechanical analysis of surfaces and localized		
	surface sampling for chemical analysis.		
Final Deliverables:	Written and oral report		
Option:	For credits		
Option Information:	3 credits		
Desired Qualifications:	Interest in heat transfer, nanotechnology, and/or metrolog	ју	

Project name:	Nanoscale Heat Transfer in Semiconductor Thin Films	Project ID:	R024
Supervisor:	Xianfan Xu	Number of positions:	1
	This project deals with study of heat transfer in very thin f	ilm semiconductor materia	als using
	Raman Spectroscopy and ultrafast laser measurement systems. Heat transfer in advanced		
	semiconductor materials including 2D materials (very thin layered materials bonded by van der		
	Waal's force) shows superior characteristics for appl	ications in numerous adva	anced
Project Description:	devices. Their thermal transport behaviors are also different compared with bulk materials, and		
	an understanding of the transport process is important for the applications of these materials.		
	We use non-contact optical method (i.e., lasers etc.) to investigate heat flow and control in		
	these materials. The undergraduate student will work with graduate students to learn to use		
	state-of-the-art experimental facilities, carry out experiments, and analyze experimental		
	results.		
Final Deliverables:	Summary Report		
Option:	For credits		
Option Information:	3 credits		
Desired Qualifications	Mechanical Engineering Junior or Senior standing with GPA > 3.5, having taken ME315 is a		
Desired Qualifications:	plus.		

Project name:	Nanoscale 3D printing	Project ID:	R025
Supervisor:	Xianfan Xu	Number of positions:	1
	The ability to create 3D structures in the micro and nanoscale is important for many		
	applications including electronics, microfluidics, and tissue engineering. This project deals with		
	developing and testing of a laser-based setup for building 3D structures with sub-micrometer		
	resolution. A method known as femtosecond laser two photon polymerization is used to		
Drainat Depariation	fabricate such structures in which a resin is exposed to laser. Moving the laser in a predefined		
Project Description:	path results in the desired shape and structure. The 3D printing process incorporates the steps		
	from designing a CAD model file to slicing the model in layers to generating the motion path of		
	the laser needed for fabricating the structure. Machine learning is also being used to improve		
	the printing accuracy. Possible involvements by the undergraduate researcher include		
	developing control algorithms, better CAD models, and better manufacturing strategies.		
Final Deliverables:	Summary Report		
Option:	For pay		
Option Information:	Information: 10 hours/week, and 15 \$/hour		
Desired Qualifications:	Mechanical Engineering Junior or Senior standing with GPA > 3.5, CAD models, knowing		
	Python is a plus."For Credit" can also be arranged as 3 credits.		

Project name:	Building torque-controlled actuation system for tip-extension robot	Project ID:	R026
Supervisor:	Laura Blumenschein	Number of positions:	1
	Tip extension "vine― robots are a class of soft robo	t that extends its length by	/ eversion of
	material at its tip. This process is driven by the antagonis	tic interaction between inter	ernal air
	pressure and a motor which controls the release of material, and controlling the force applied		
Project Description:	by the motor paves way for adaptive, intelligent behaviors of the robot. This project aims to		
	build a prototype that integrates a brushless DC (BLDC) motor, which is good at low-speed,		
	torque-controlled applications, to a vine robot base station and test out control laws based on		
	feedback signals such as current, speed, and position.		
Final Deliverables:	Design for new growing robot with torque controller		
Option:	For credits		
Option Information:	3 credits		
Desired Qualifications	Requires experience with physical prototyping and knowledge of feedback control. Past		
Desired Qualifications:	experience working with BLDC motors (such as on quadcopters and mobile robots) is		
	preferred.		

Project name:	Laser-based manufacturing of soft robots from thin-film materials	Project ID:	R027
Supervisor:	Laura Blumenschein	Number of positions:	1
	Many soft robotic devices are created from joining layers	of thin-film materials to cr	eate
	inflatables that respond to air pressure inputs in desirable ways. Laser cutting machines can		
Droigot Decorintion	do so by "welding― the thermoplastic films with great precision and efficiency, but the		
Project Description:	intense power of laser beams makes controlling the process a challenge. This project looks at		
	how machine settings, patterns, and treatments to the films affect the outcome of the weld,		
	and aims to establish a procedure to manufacture soft robots reliably.		
Final Deliverables:	Experimental results of laser manufacturing testsFinal presentation		
Option:	tion: For credits		
Option Information:	Option Information: 3 credits Desired Qualifications: Experience with laser cutting and/or 3D printing, and knowledge of heat-transfer are preferred		
Desired Qualifications:			e preferred.

Project name:	Mechanical design and control integration of laser-based flow diagnostics system	Project ID:	R028
Supervisor:	Jun Chen	Number of positions:	2
	The undergraduate researchers will work with graduate students in my group to design		
	subsystems for a laser-based flow diagnostics system. The project involves the mechanical		
Project Description:	design of the test rigs and integrating camera-laser control using microcontrollers. The		
	prototype system will be tested at a cardiovascular application to study hemodynamics and		
	another one for large-scale flow measurement.		
Final Deliverables:	Design package and physical prototype.		
Option:	Discuss with advisor		
Option Information:	Options and details to be discussed with faculty advisor		
Desired Qualifications:	Good GPA. Passion for hand-on work.		

Project name:	Freehand Sketch Recognition	Project ID:	R029
Supervisor:	Min Liu	Number of positions:	2
	Freehand sketching is still the most efficient way to communicate design ideas for mechanical		
	engineers, while in most current mechanical CAD systems, strict parametric sketches are used		
Project Description:	for constructing detailed CAD models. To bridge the gap, this project research on converting		
	hand-drawn sketches into parametric models, leverages advanced machine learning models		
	(CNNs, GNNs, transformers) combined with geometric and constraint-solving algorithms.		
Final Dalivarables	One end-of-semester technic report based on weekly progress presentations and meeting)		
Filial Deliverables.	and one final presentation.		
Option:	Discuss with advisor		
Option Information:	Options and details to be discussed with faculty advisor		
Desired Qualifications:	Desired Qualifications: Motivated juniors or seniors; Experience with Parametric CAD and basic programing skills		ıg skills

Project name:	Finite Element Analysis	Project ID:	R030
Supervisor:	Thomas Siegmund	Number of positions:	2
	Conduct a project within the Microstructure Testing and Analysis Lab		
Project Description:	https://engineering.purdue.edu/MYMECH.The project will make use of finite element analysis		
	and its application. Specific topics to be determined.		
Final Dolivorables:	A report, model files and results. Present a poster at the	Spring Undergraduate Re	search
Fillal Deliverables.	Conference at Purdue.		
Option:	For credits		
Option Information:	ation: 3 credits		
Desired Qualifications:	ns: ME 489 or similar		

Project name:	Catalytic water treatment processes	Project ID:	R031
Supervisor:	David Warsinger	Number of positions:	2
	Water pollution is a significant concern in many countries	and requires innovative to	echnologies
	to tackle them. Many pollutants hazardous to human health, including pesticides,		
	fluoropolymers, and pathogens, can be broken down into	their constituent minerals	through
	photocatalysis. However, existing membranes need substantially improved UV light utilization		
Dreiset Description	and penetration for real-world use. We are working on consistently-sized nanostructures near		
Project Description:	the wavelengths of UV light to control light and enhance the performance of novel		
	photocatalytic membranes. Furthermore, our group works	s on separation technolog	ies to
	remove Per- and polyfluoroalkyl substances (PFAS). The	team is pursuing multiple	projects to
	explore batch reverse osmosis, nanofabricated membranes, light-driven reactions, artificial		
	intelligence control algorithms, and thermodynamic optimization of energy systems.		
	The student who joins this lab will be expected to attend weekly lab meetings and sub-group		
	meetings. This project seeks students who possess chemistry knowledge and a preliminary		
	understanding of membrane sciences. The student's primary involvement will be in fabricating		
	new membranes, characterization, and design experiments for testing the technologies. In		
Final Deliverables:	addition to the required skills mentioned above, applicants with additional experience with		
	some of the following programs are preferred: Python, Adobe Illustrator and CAD tools. The		
	student will be expected to give weekly progress updates . The student should also be eager		
	to collaborate with other researchers outside of mechanical engineering to draw from a broad		
	range of expertise in pursuing our research goals.		
Option:	For pay		
Option Information:	12 hours/week, and 17 \$/hour		
	- Some background in prototype development/manufacturing will be useful Hands on		
Desired Qualifications	experience in conducting experiments in the lab Experience with python/MATLAB will be		
	useful for assisting inside projects related to the technology we are developing Students		
	should have a strong interest in experimental research, motivation to pursue research		
	problems related to air purification to tackle future pander	micsPay or credit are bo	th options.

Project name:	Acoustic bioaerosol removal in HVAC systems	Project ID:	R032
Supervisor:	David Warsinger	Number of positions:	2
	Particulate Matter (PM) 2.5 and various gaseous pollutan	ts in the surrounding air p	ose a
	significant threat to humanity. The quality of indoor air depends on the air quality of outdoor		
	sources, and given the increased amount of time spent in	doors by humans, resear	ch on air
	quality needs more focus than ever. Current state-of-the-art filtration technologies have severe		
	limitations in capturing specific particle sizes called the most penetrating particle sizes		
	(MPPS). This project explores a novel air purification technology that uses acoustic waves to		
	enhance the capture efficiency of fiber filters. We investigate the potential of acoustic		
	interaction and streaming forces to manipulate the mover	nent of aerosols within a f	lowing
Project Description:	stream to direct them toward the filter fibers. These syste	ms require high-efficiency	[,] filters to
Project Description.	remove MPPS, which further causes a high-pressure dro	p in the system.In this wo	rk, we try to
	harness the potential of acoustic radiation and streaming	forces to improve the cap	ture
	efficiency of the fiber filters. Our numerical simulations showed an increase of up to 12x -123x		
	for different configurations of fiber filters. Currently, we are constructing a bench-scale		
	experimental setup to demonstrate the complex interaction between the acoustic waves, fiber		
	filters, and particles. This setup focuses on generating aerosols that mimic real-world particle		
	size distributions. The particle-laden air stream enters a bench-scale duct where the acoustic		
	filtration device is mounted. Finally, the number concentration of particles upstream and		
	downstream of the acoustic filtration device is measured to evaluate the capture efficiency of		
	the system.		
	The student who joins this lab will be expected to attend w	weekly lab meetings and	sub-group
	meetings. This project seeks students who possess fluid mechanics knowledge and a		
	preliminary understanding of aerosol transport and acoustics. The student's primary		
	involvement will be in designing experiments to investigate aerosols' behavior in internal flows		
	when subjected to acoustic forces. In addition to the required skills mentioned above,		
Final Deliverables:	applicants with additional experience with some of the following programs are preferred:		
	Python, Adobe Illustrator and Arduino. The student will be expected to give weekly progress		
	updates and will have the opportunity to present some of their updates at quarterly meetings		
	with industry members in Purdue's Center for High Performance Buildings. The student		
	should also be eager to collaborate with other researchers outside of mechanical engineering		
	to draw from a broad range of expertise in pursuing our re	esearch goals.	
Option:	For pay		
Option Information:	Option Information: 12 hours/week, and 17 \$/hour		

	- Some background in prototype development/manufacturing will be useful Hands on
	experience in building pressurized air(pneumatic) circuits- Knowledge on building electronic
	circuits would be beneficial- Experience with python/MATLAB will be useful for assisting inside
Desired Qualifications:	projects related to the technology we are developing Students should have a strong interest
	in experimental research, motivation to pursue research problems related to air purification to
	tackle future pandemics Familiarity with HVAC is not required, but would be beneficialPay
	or credit are both options