

Project name:	Energy Storage Analytics	Project ID:	R001
Supervisor:	Partha P. Mukherjee	Number of positions:	3
	Lithium ion (Li-ion) batteries are ubiquitous. Thermal safety and degradation characteristics of		
Broject Description:	these systems are critical toward safer and high-performance batteries for electric vehicles. As		
Project Description.	part of this research, data-driven analytics of experimental and simulated performance under		
	normal and anomalous operating conditions of Li-ion cells will be performed.		
Final Dolivorables:	The final deliverable will be one end-of-semester research report (based on weekly progress		
Fillal Deliverables.	presentations and updates) and one final presentation.		
Option:	For credits		
Option Information:	3 credits		
Desired Qualifications:	Strong analytical skill and desire to learn new experimental and modeling/analysis tools.		

Project name:	Thermal Management of Electronic Systems	Project ID:	R002	
Supervisor:	Justin Weibel	Number of positions:	2	
	Proper thermal management of electronic devices is critic	cal to avoid overheating fa	ilures and	
	ensure energy efficient operation, from supercomputers to electric vehicles. Research projects			
	in the Cooling Technologies Research Center (CTRC) are exploring new technologies and			
	discovering ways to more effectively apply existing technologies to addresses the needs of			
	companies and organizations in the area of high-perform	ance heat removal from c	ompact	
Dreiset Description	spaces. One of the distinctive features of working in this	Center is training in praction	cal	
Project Description:	applications relevant to industry. The research experience will be in the Electronics Cooling			
	Laboratory of the CTRC, which is located within the Mechanical Engineering Building. Our			
	ongoing projects are aligned with major national initiatives to develop thermal management			
	systems that will enable carbon-neutral electrified aviation and eliminate energy and water use			
	associated with data center cooling. Read more about these initiatives at the links			
	below:https://arpa-e.energy.gov/technologies/programs/ascendhttps://arpa-e.energy.gov/techn			
	ologies/programs/coolerchips			
Final Deliverables:	Depends on project and for credit/pay			
Option:	For credits			
Option Information:	3 credits			
Desired Qualifications:	Projects are open to excellent students with various engineering and science backgrounds.			

Project name:	Realization of meta-material via 3D additive manufacturing	Project ID:	R003
Supervisor:	Yung C. Shin	Number of positions:	2
	Metamaterials are artificial or man-made materials that ar	e crafted to achieve phys	ical
	behaviors that are not demonstrated by the constituting m	naterial in its conventional	sense.
	They are achieved by cumulating the behavior of the unit	cell designed into the ma	cro scale
	and thereby the effects are also translated into the macro	scale. Auxetic, acoustic,	and
	electromagnetic metamaterials are the most pondered su	bjects in the research fiel	d as they
Project Decorintion	have large applications/potential.This research is to expe	rimentally exploit the feas	ibility of
Project Description:	building different metamaterials by using 3D additive manufacturing. 3D additive		
	manufacturing provides unprecedented capabilities for building complex 3D structures from		
	CAD drawings. The participating student needs to carry out the following tasks:1. Literature		
	review of related fields.2. Design 3D metastructure and build them using a 3D printer in the		
	lab.3. Characterize the resultant properties of meta-material.4. Optimize process parameters		
	to achieve the best quality and throughput.5. Generate a technical report summarizing all the		
	findings.		
	It is expected to submit weekly reports describing the find	lings and results of the re	search
Final Dalivarables	during the regularly scheduled meetings. A final written report is required for the final grade,		
Fillal Deliverables.	which must contain a literature review, design of metal material, 3D printing of the designed		
	structure, all the experimental characterization and analyst	sis results.	
Option:	For credits		
Option Information:	3 credits		
Desired Qualifications:	Sophomore or higher standing with a minimum GPA of 3.4		

Project name:	Data-driven modeling of microstructure- properties relationships for additively manufactured metal parts	Project ID:	R004
Supervisor:	Yung C. Shin	Number of positions:	2
	Due to the number of parameters used in AM, predicting	the resultant mechanical	properties is
	very time-consuming and expensive, which remains one	of the main obstacles to w	/ide
	adoption in the industry. This study aims to establish the microstructure-property relationship		
	of AM-built metal parts, which will contribute to the drastic	reduction of process lead	d time and
	certification of parts. The participating student(s) is expe	cted to establish	
Project Description:	microstructure-mechanical property relationships by colle	cting scattered data in the	ilterature,
	processing microstructure images to extract microstructure information from the literature and		
	AM built samples, and then using a machine learning technique to capture the relationships		
	between microstructure and mechanical properties. In addition, opportunities exist to print		
	actual tensile specimens using the available facilities in the supervisor's lab, conduct heat		
	treatment, if necessary, carry out microstructure measurements, and perform mechanical		
	testing using a universal testing machine.		
	It is expected to submit weekly reports describing the progress, findings and results of the		
Final Dolivorables:	research project during the regularly scheduled meetings. A final written report is required for		
Fillal Deliverables.	the final grade, which shall contain a literature review, collected microstructure data, all the		
	experimental results, and analysis results.		
Option:	For credits		
Option Information:	3 credits		
Desired Qualifications:	Junior or higher standing with a minimum GPA of 3.5.		

Project name:	Nanoscale 3D printing	Project ID:	R005
Supervisor:	Xianfan Xu	Number of positions:	2
	The ability to create 3D structures in the micro and nanoscale is important for many		
	applications including electronics, microfluidics, and tissue engineering. This project deals with		
	development and testing of a setup for building 3D structures using a femtosecond pulsed		
	laser. A method known as two photon polymerization is u	sed to fabricate such stru	ctures in
Breiset Description	which a polymer is exposed to laser and at the point of th	e exposure the polymer c	hanges its
Project Description:	structure. Moving the laser in a predefined path results in	a predefined path results in the desired shape and the	
	structures. The setup incorporates the steps from designing a CAD model file to slicing the		
	model in layers to generating the motion path of the laser needed for fabricating the structure.		
	Possible improvements to the process by the undergraduate researcher include control		
	algorithms, better CAD models, and better manufacturing strategies.		
Final Deliverables:	Summary Report		
Option:	Discuss with advisor		
Option Information:	Options and details to be discussed with faculty advisor		
Desired Qualifications	Mechanical Engineering (or other engineering) Junior or Senior standing with GPA > 3.5,		
Desired Qualifications:	CAD models, knowing Python is a plus. Either for Credit or for pay (\$15/hr) will be OK.		

Project name:	Nanoscale Heat Transfer	Project ID:	R006
Supervisor:	Xianfan Xu	Number of positions:	1
	This project deals with study of heat transfer in very thin f	ilm materials using Rama	n
	Spectroscopy and Ultrafast laser systems. Heat transfer in nanoscale materials including 2D		
	materials (very thin layered materials bonded by van der Waal's force) shows superior		
	characteristics for applications in numerous advanced devices. Their thermal transport		
Project Description:	behaviors are also different compared with bulk materials, and an understanding of the		
	transport process is important for applications of these materials. We use non-contact, optical		
	method (i.e., lasers etc.) to investigate heat flow in these materials. The undergraduate student		
	will work with graduate students to learn to use state-of-the-art experimental facilities, carry out		
	experiments, and analyze experimental results.		
Final Deliverables:	Summary Report		
Option:	For credits		
Option Information:	3 credits		
Desired Qualifications	Mechanical Engineering Junior or Senior standing with GPA > 3.5, having taken ME315 is a		
Desired Qualifications:	, plus		

Project name:	Biophysical properties of macromolecules	Project ID:	R007
Supervisor:	Arezoo Ardekani	Number of positions:	2
	The project focuses on curating data such as molecular descriptors from journal articles. Data		
	will be used to train a neural network architecture that can predict the relationship between		
	molecular descriptors and the functionality of molecules. The undergraduate researcher will		
Broject Description:	work on curating data from a collection of journal articles	for certain biomolecules.	Collecting
Project Description.	data would involve manually collecting data from the litera	erature, extracting the values of the	
	molecular descriptors, and evaluating the accuracy of the collected data. The collected data		
	will then be used to train a neural network architecture that can predict the relationship		
	between the molecular descriptors and the functionality of molecules.		
Final Deliverables:	Summary report, as well as presentation to the group		
Option:	For credits		
Option Information:	3 credits		
Desired Qualifications:	Knowledge of Python		

Project name:	Tension transducer for suture in horses	Project ID:	R008
Supervisor:	Arezoo Ardekani	Number of positions:	3
	The project would consist of developing a device to measure the tension on sutures implanted		
	into the respiratory tract of horses. Ideally, tension could be sampled at a high frequency or at		
	specific time points and the device would be wireless. Th	e suture used specifically	within the
	equine airway is large-gauge (large diameter) and, theref	ore has different material	properties;
Drainet Deparimtion.	ideally, the device would measure these without interfering	ng directly with the amoun	h the amount of tension
Project Description:	on the suture. An ideal device could be implanted for a period of approximately 6 months and		
	be activated as needed for measurements at different time points. The end goal of the project		
	is to aid in the understanding of laryngeal hemiplegia in horses and the "tie-back― a		
	surgery that is used frequently to treat laryngeal hemiplegia in racehorses. Mentors are Dr.		
	Arezoo Ardekani from Mechanical Engineering and Dr. Michelle Tucker from Veterinary		
	Clinical Sciences.		
Final Deliverables:	Functional suture tension-measuring device		
Option:	For credits		
Option Information:	3 credits		
Desired Qualifications:	Experience with mechanical testing		

Project name:	Additive manufacturing of soft materials for biomedical applications	Project ID:	R009
Supervisor:	Yung C. Shin	Number of positions:	2
	This study is to explore the additive manufacturing capab	ilities of novel soft materia	als such as
	different polymers, metal + polymers or ceramic + polymers, using a 3D inkjet type printer		
Project Description:	available in the supervisor's lab. The student is expected to optimize the process		
	parameters to build successful samples using the selected materials and characterize their		
	geometric accuracy, microstructural and mechanical properties.		
Final Dalivarables	A final written report is required for the final grade, which contains all the experimental results,		
Filial Deliverables.	collected testing results and analysis results.		
Option:	For credits		
Option Information:	3 credits		
Desired Qualifications:	Sophomore or higher standing with the minimum GPA of 3.4, 3D printing experiences are		
	useful, but not required.		

Project name:	SCALE Workforce Development Project	Project ID:	R010
Supervisor:	Eric Holloway	Number of positions:	2
	Students will work with a team to help train highly-skilled	U.S. engineers, hardware	designers,
	and manufacturing experts on a microelectronics workforce development project funded by the		
	Department of Defense and managed by NSWC Crane. The particular aspect of this project is		
Project Description:	to ensure the technical and professional development of technicians at 2-year universities,		
	undergraduates, and graduate students at 4-year universities across the current 19 institutions		
	that are part of Scalable Asymmetric Lifecycle Engagement		
	(https://research.purdue.edu/scale/) are trained and prepared to enter the workforce.		
	1. Assist in identifying best practices for targeting and developing specific technical skills for		
	students outside of classroom activities. 2. Assist in identifying best practices for targeting and		
Final Deliverables:	ertification for students outside of		
	classroom activities.3. Assist in identifying mentoring train	ning materials and activitie	es for
	students at internships related to student's career interests and goals.		
Option:	For credits		
Option Information:	3 credits		
Desired Qualifications:	ME undergrad; Must be a U.S. citizen due to Department of Defense stipulations.		

Project name:	2D Materials	Project ID:	R011
Supervisor:	Jong Hyun Choi	Number of positions:	2
	2D materials show excellent properties for diverse engineering applications including		
Broject Description:	optoelectronics and nanoelectronics as well as energy storage and conversion. The goal of		
Project Description:	this project is to understand physicochemical properties of 2D materials such as MoS2 and		
	WSe2. The project activities will include manufacturing and characterization.		
Final Deliverables:	Monthly report and final presentation to the group		
Option:	For credits		
Option Information:	3 credits		
Desired Qualifications:	Motivated students with strong GPA		

Project name:	DNA nanotechnology	Project ID:	R012
Supervisor:	Jong Hyun Choi	Number of positions:	1
	DNA nanotechnology uses DNA molecules as engineering building blocks. For example,		
Project Description:	complex nanoscale architectures can be built from DNA. This project aims to develop novel		
	bio-manufacturing technologies and understand relevant thermodynamics, kinetics and		
	mechanics.		
Final Deliverables:	Monthly reports and final presentation to the group		
Option:	For credits		
Option Information:	3 credits		
Desired Qualifications:	Motivated students with strong GPA		

Project name:	Efficient and sustainable water technology	Project ID:	R013	
Supervisor:	David Warsinger	Number of positions:	4	
	Water and energy are tightly linked resources that must b	oth become renewable fo	ra	
	successful future. However, today, water and energy res	ources are often in conflic	t with one	
	another, especially related to impacts on electric grids. Further, advances in nanotechnology,			
	material science and artificial intelligence allow for new a	venues to improve the wid	lespread	
Project Description:	implementation of desalination and water purification tech	nology. This project aims	to explore	
	nanofabricated membranes, light-driven reactions, artifici	al intelligence control algo	rithms, and	
	thermodynamic optimization of systems. The students will be responsible for fabricating			
	membranes, building hydraulic systems, modeling thermal fluid phenomenon, analyzing data,			
	or implementing control strategies in novel system configurations. More information here:			
	www.warsinger.com			
	All students will be required to read relevant, peer-reviewed literature and keep a notebo			
Final Dalivarables	log of weekly research progress. At the end of the semester or term, each student will present			
Filial Deliverables.	a talk or poster on their results. Student efforts will contribute data, graphics, and efforts			
	towards scientific publications.			
Option:	Discuss with advisor			
Option Information:	Options and details to be discussed with faculty advisor			
	Applicants should have an interest in thermodynamics, water treatment, and sustainability.			
Desired Qualifications:	Applicants with experience in some (not all) of the following are preferred: experimental design			
	and prototyping, manufacturing, Python, LabView, EES, MATLAB, 3D CA			

Project name:	Resilient Extraterrestrial Habitats	Project ID:	R014	
Supervisor:	Shirley Dyke	Number of positions:	3	
	There is growing interest from Space agencies such as N	ASA and the European S	pace	
	Agency in establishing permanent human settlements outside Earth. To advance knowledge in			
	the field, the Resilient Extra-Terrestrial Habitat Institute (RETHi) is taking steps to develop			
	technologies that will enable resilient habitats in deep space, that will adapt, absorb and			
	rapidly recover from expected and unexpected disruption	s without fundamental cha	anges in	
	function or sacrifices in safety. To study, demonstrate, an	d evaluate the technologi	es	
	developed in pursuit of this mission, a multi-physics cybe	r-physical testbed is being	founded at	
Project Description:	the Ray W. Herrick Laboratories at Purdue University. The testbed will consider a combined			
	virtual and physical habitat system and will aim to emulate the extreme temperature			
	fluctuations that happen in deep space. We also aim to consider design trade-offs aimed			
	toward the goals of resilience. Thus, we have also established a modeling platform to support			
	rapid, stochastic simulations of habitat systems to quantify the space architectures that			
	enhance resilience. These might consider the important features of the robots, the sensors,			
	and the structure itself that make the habitat resilient. We plan to include several			
	undergraduate students in these research projects.			
Final Dalivarables	Technical report documenting experimental/simulation results, with potential to be a published			
rinal Deliverables.	manuscript.			
Option:	For credits			
Option Information:	3 credits			
Desired Qualifications	Students should be critical thinkers. Some tasks require strong experimental skills and others			
	require programming skills (Python), CAD skills, and experience in MATLAB/Simulink.			

Project name:	Revolutionary turbines for clean aviation and power	Project ID:	R015
Supervisor:	Guillermo Paniagua	Number of positions:	2
Project Description:	This project aims to develop radical new turbine concepts for clean propulsion and power		
	generation while addressing fundamental fluid mechanics problems in compressible internal		
	flows. To accurately estimate all the performance figures of merit of a novel turbine, it is		
	necessary to accompany the experimental results with a detailed computational analysis of all		
	the experimental sensors and quantify their distortion in the flow field. This project will deliver		
	the uncertainty of the fused experimental and computational data.		
Final Deliverables:	Report, codes, final presentation		
Option:	For credits		
Option Information:	3 credits		
Desired Qualifications:	Seniors or juniors		

Project name:	Sports Technology	Project ID:	R016
Supervisor:	Euiwon Bae	Number of positions:	2
	Applied optics lab is searching for UG students who are interested in developing measurement		
	systems related to Sports Technology. We are seeking UGs who are interested in using		
Project Description:	microcontrollers and sensors to provide data for connected sports equipment devices and/or		
	provide data feedback for the athlete's performance and exercise. This requires some		
	background in utilizing microcontrollers, battery usage, and sensor integration.		
Final Deliverables:	Weekly meeting slides, working prototype, and final report,		
Option:	For credits		
Option Information:	3 credits		
Desired Qualifications:	Electrical : Arduino programming experience preferred; If you have some PCB design		
	experience, it's even better		

Project name:	Medical Technology	Project ID:	R017
Supervisor:	Euiwon Bae	Number of positions:	2
	Applied optics lab is searching for UG students who are in	nterested in developing m	easurement
	systems related to Medical Technology. We are seeking UGs who are interested in using		
	microcontrollers and sensors to provide data for human physiological measurements such as		
Project Description:	skin temperature, blood pressure, and electrogram. This requires some background in utilizing		
	microcontrollers, battery usage, and sensor integration. For Spring 24, we are aiming to		
	integrate three detection modalities into a single measurement system. Students will work with		
	existing previous prototype devices and design, fabricate an integrated measurement unit.		
Final Deliverables:	Weekly meeting slides, working final prototype, and final report		
Option:	For credits		
Option Information:	3 credits		
Desired Qualifications	Electrical : Arduino programming experience preferred; If you have some PCB design		
Desired Qualifications:	experience, it's even better		

Project name:	In vitro micro/milli-fluidic chip design	Project ID:	R018	
Supervisor:	Euiwon Bae	Number of positions:	2	
	Applied optics lab is searching for UG student who are interested in developing an in vitro			
Project Description:	mico/millifluidic chip design and fabrication for biomedical application. Project aim is to design			
	a chamber and identify viable manufacturing methods, and fabricate the prototype for testing.			
Final Deliverables:	Weekly update slides, final prototype, and final report			
Option:	For credits			
Option Information:	3 credits			
Desired Qualifications:	Experience in CAD, material, fluidics, and machining is preferred			

Project name:	Microplastic detection from enviroment	Project ID:	R019
Supervisor:	Euiwon Bae	Number of positions:	1
Project Description:	Applied optics lab is searching for UG students who are interested in conducting research in		
	the area of microplastic detection. The topic will be conducting a critical review of the research		
	journal paper, evaluating the strengths and weaknesses of the methods, and proposing a new		
	method and/or design of an instrument that can detect microplastic particles in large volumes		
	of samples such as water or drink. No physical prototype will be built at this stage.		
Final Deliverables:	Weekly update slides, final design review, and final report		
Option:	For credits		
Option Information:	2 credits		
Desired Qualifications:	Need to read many papers and tablulate/summarize the topic; need to do a critical review of		
	the subject matter.		

Project name:	Application of Machine Learning Algorithms for Structural Analysis and Material Design of aerospace systems	Project ID:	R020
Supervisor:	Fabio Semperlotti	Number of positions:	2
	In recent years, machine learning and artificial intelligence algorithms have been rapidly		
	expanding to computational mechanics. They offer the possibility to perform very challenging		
	computations that would otherwise be beyond reach for more classical methods based on the		
	numerical solution of differential equations. The project will involve the development and		
Project Description:	numerical implementation of machine learning algorithms to simulate the response of		
	structural and multiphysics systems in the static and dynamic regimes. You will acquire the		
	following knowledge: basic knowledge of neural network architectures; basic skills for the		
	simulation of neural networks (writing and executing simple codes); basic theoretical and		
	numerical skills for the static and dynamic analysis of structural systems.		
	Final report summarizing the models developed and the r	numerical results obtained	l. Original
Final Deliverables:	results of sufficient impact will be expanded in a technical publications (either conference or		
	journal).		
Option:	For credits		
Option Information:	3 credits		
Desired Qualifications:	Juniors and seniors. Interest in solid mechanics and dynamics. Helpful skills: Matlab, Python,		
Desired Qualifications.	Finite Elements.		

Project name:	Research in laser-based manufacturing and materials processing	Project ID:	R021	
Supervisor:	Benxin Wu	Number of positions:	4	
Project Description:	Students are expected to perform work in the field of laser-based manufacturing and materials			
	processing. A student may be involved in one or multiple topics related to laser-based additive			
	and/or substractive manufacturing.			
Final Dolivorables:	Students will be evaluated based on the quantity, quality and difficulty of the work performed.			
Fillal Deliverables.	The exact form of deliverables depends on the actual topic(s) in which the student is involved.			
Option:	For credits			
Option Information:	3 credits			
Desired Qualifications:	Good hands-on, material characterization and/or machine shop capabilities, etc. The number			
	of credits is flexible and can be determined after discussions.			

Project name:	Mechanical Engineering Educational Research	Project ID:	R022	
Supervisor:	Eric Holloway	Number of positions:	2	
	Are you interested in how Mechanical Engineers are edu	cated and the processes	of learning	
Dreiset Description	associated with learning to become an engineer? This research utilizes various educational			
Project Description:	methods to take a deeper dive into how students learn various aspects of Mechanical			
	Engineering with the goal of improving how engineers are educated.			
	Multiple projects are available, and deliverables will depend on a student's interests and skills.			
Final Deliverables:	Students will learn various quantitative and qualitative methods, working with a graduate			
	student and faculty advisor. Project deliverables will be discussed with students at the start of			
	the project.			
Option:	For credits			
Option Information:	3 credits			
Desired Qualifications	Juniors or Seniors, ideally those looking to go to grad school, those interested in learning			
Desired Qualifications:	education methods that complement their technical skills			

Project name:	Mechanical analysis of individual cells with atomic force microscopy	Project ID:	R023
Supervisor:	Ryan Wagner	Number of positions:	2
	Atomic force microscopy (AFM) is a tool that can probe m	nechanical forces betweer	n a sharp tip
	and a sample. In this project, we will analyze AFM force vs indentation curves on different		
	classes of cells. The goal is to understand how the mechanical properties of cells change in		
	response to disease or injury. The initial AFM data set for this project will be generated by		
	collaborators and shared with the undergraduate student	(s). The specific project a	aim will be
Project Description:	els to interpret the force in	et the force indentation	
	data. This will consist of first doing a literature review to understand the nature of these		
	models. After the literature review is complete, curve-fitting routines for selected models will		
	be implemented within a Python programming environment. This Python code is the main		
	project deliverable and will be archived for use by other students in the lab group. If this first		
	project phase is successfully completed, an expanded AFM data set on additional cell samples		
	will be collected and analyzed.		
Final Deliverables:	Python analysis code and a final project report		
Option:	For credits		
Option Information:	3 credits		
Desired Qualifications:	Junior or Senior status with some programming experience		

Project name:	Vibrating piezoelectric membranes for water filtration applications	Project ID:	R024	
Supervisor:	Ryan Wagner	Number of positions:	2	
	A piezoelectric is a material where an externally applied v	oltage causes an internal	strain.	
	Such materials have many applications in areas such as microelectronics, sensors, actuators,			
	non-destructive testing, metrology, and time keeping. Most piezoelectrics are ceramic			
	materials; however, there are a few crystalline polymers that experience the piezoelectric			
	effect. The most common of these polymers is Polyvinyli	dene fluoride (PVDF). In	this project	
	we will investigate using piezoelectric PVDF membranes	for water filtration. The id	dea is that	
Dreiget Decerintion.	by vibrating the membrane using the piezoelectric effect we can change the filtration properties			
Project Description:	of the membrane to selectively stop or pass different types of particles. The first part of this			
	project will consist of a literature review on the physics and current landscape of using			
	piezoelectric membranes for filtration applications. This v	vill be followed by COMS	OL based	
	finite element simulations of the membrane response. Th	e simulations will help in	developing	
	a better understanding of how the membrane is expected to move under an applied voltage. If			
	these first two project phases are successful, then we will plan and perform vibration analysis			
	experiments on piezoelectric PVDF membranes and compare the results to the COMSOL			
	simulations.			
Final Deliverables:	A final written and oral project report			
Option:	For credits			
Option Information:	3 credits			
Desired Qualifications:	Junior or Senior status with an interest in finite element si	mulations		

Project name:	Thermal Management and Thermal Systems (Industrial Heat Pumps; Military Vehicles; Data Centers)	Project ID:	R025
Supervisor:	Davide Ziviani	Number of positions:	3
	Thermal management is needed in different applications.	Research projects within	Center for
	High Performance Buildings (CHPB) and funded by Federal agencies (DOE & amp; DoD) aim		
Brainst Description	at tackling problems related to high temperature heat pur	nps (US DOE IEDO), com	mercial
Project Description:	heat pumps with natural refrigerants (US DOE BTO), tran	sport vehicles for military	applications
	(US DoD/SERDP) as well a data centers (ARPA-E COOLERCHIPS program). Research will		
	be conducted at the Ray W. Herrick Laboratories, the largest academic HVAC lab.		
Final Dalivarables	Weekly research progress short presentations and a final summary report; possible		
Final Deliverables:	contributions to Conference papers		
Option:	Discuss with advisor		
Option Information:	Options and details to be discussed with faculty advisor		
	Projects are open to students with various engineering and science backgrounds. Preferred		
Desired Qualifications:	knowledge of thermodynamics and Python (or C++). Either for Credit or for pay will be		
	acceptable depending on the skill levels and time commitment.		

Project name:	Thermometers, Strain Gauges and Defect Detectors for Semiconductors using Light	Project ID:	R026	
Supervisor:	Thomas Beechem	Number of positions:	3	
	Who we areâ€l Specere is a latin word that means "to look or behold.― That's what			
	we do. We look, explore, and examine different ways to: (1) move energy with light and (2) get			
	information from light. More specifically, we are a light lab employing infrared physics to create			
	spectroscopic, thermal, and sensing solutions.Research Topic, Semiconductor Sensing:			
	Semiconductor chips are some of the most technologically advanced machines humanity has			
	ever made. Like any complex machine, they break. Met	nods for predicting where	they will	
	break and why they have broken are therefore necessary	. You will help us make th	e	
	thermometers, strain gauges, and "defect detectors― that are up to the task using some			
Project Description:	of the world's most advanced semiconductor characterization tools that we develop here			
	at Purdue.What' You'II Do: Team members will be responsible for performing			
	spectroscopic measurements of next generation semiconductor materials, devices, and			
	packages. Specifically, you will use Raman (sounds like but is not the noodle) and			
	photoluminescence (fancy for glow in the dark) to image the temperature, stress, and			
	presence of defects in everything from commercial logic chips made by Intel to materials being			
	considered for next generation memory devices. Direct mentoring from Dr. B will build your			
	skills in advanced spectroscopic tools (Raman, photoluminescence), coding, technical			
	communication and professional development. In addition, you will have the chance to			
	participate in writing journal articles and pursuing patents	based on your work.		
Final Dalivarables	Group Presentation outlining technical progress with accompanying "meeting slide― deck			
Fillal Deliverables.	outlining research progress through term.			
Option:	For credits			
Option Information:	3 credits			
	We look for motivated and hard-working undergraduates	having both strong aspira	tions for	
Desired Qualifications:	post-graduate studies as well as those that are just considering the possibility of grad school.			
	All applicants should be capable of working independently while effec			

Project name:	Engineering and Public Health	Project ID:	R027	
Supervisor:	Francisco Montalvo	Number of positions:	2	
	Through our partnership with the Pan-American Health Organization (a branch of the WHO),			
	our research focuses on global health and the adoption of water quality innovations, namely			
	the implementation of point-of-use (POU) filters in public health clinics in sites across Latin			
	America. By employing a translational research framework, we are integrating research			
Project Description:	questions focused on the efficacy of POU technologies, with applied and operational research,			
	seeking a better understanding of these interventions and the factors affecting ongoing			
	technology translation processes within the local public health systems. The project will deliver			
	a final report to local government and NGOs stakeholders on the feasibility of the			
	implementation of POU technology in their region.			
	The undergraduate student researcher(s) will collaborate with other team members in various			
Final Deliverables:	phases of the project including literature reviews, experimental setups, gathering lab data, and			
	quantitative and qualitative survey analysis.			
Option:	Discuss with advisor			
Option Information:	Options and details to be discussed with faculty advisor			
Desired Qualifications:	Interest in global health and international development. Affinity with hands-on lab work, and			
	data processing using Excel and/or Python.			

Project name:	Helping ultrasound transmit through barriers such as skul	Project ID:	R028
Supervisor:	Junfei Li	Number of positions:	2
	Ultrasound is a versatile and essential medical tool used for diagnosing and monitoring a wide		
	range of medical conditions. For example, ultrasound imaging has been a non-invasive		
	method to help us see what's inside the body. High-intensity focused ultrasound has been		
	developed as a blade to remove bad tissues without opening the body. However, the		
Project Description:	application of ultrasound techniques to the brain has been limited because our skull blocks		
	most of the waves. The ability to transmit ultrasound through the skull is particularly important		
	when assessing and treating conditions within the brain, allowing for non-invasive imaging and		
	potential therapeutic applications. This project aims to develop structures to help ultrasound		
	transmit through barriers, such as skulls.		
	Weekly reports describing the progress, findings, and results of the research project during the		
Final Dalivarables	regularly scheduled meetings. A final written report is required for the final grade, which shall		
Final Deliverables.	contain a literature review, proposed method and theoretical model, simulation results, and		
	some initial experimental results.		
Option:	For credits		
Option Information:	3 credits		
Desired Qualifications	Mechanical Engineering Junior or Senior standing with GPA > 3.5, having taken ME413 is a		
	plus		

Project name:	MSRAL Research	Project ID:	R029
Supervisor:	Dave Cappelleri	Number of positions:	3
	The Multi-Scale Robotics & amp; Automation Lab (MSRA	L) performs cutting-edge i	esearch on
	robotic and automation systems at various length scales: macro-scale (cm to m), meso-scale		
Drainet Decerintion.	(~100's of μm to a few mm's), and micro-scale	(10's of μm to 100â	€™s of μm.
Project Description:	MSRAL has projects on multi-scale robotic manipulation, automation, and assembly, mobile		
	micro robotics, micro aerial and ground vehicle design & amp; control, medical robotics and		
	devices, agricultural robotics, and space robotics. See more		
	here:https://youtu.be/b-Ge1tEr_DQ		
Final Deliverables:	Final report; Project dependent deliverables may include a working prototype/demonstration		
Option:	For credits		
Option Information:	3 credits		
Desired Qualifications:	Junior standing or higher; Experience with robotics, mechatronics, 3D printing, electronics, and		
	programming is preferred.		

Project name:	Nanostructured Membrane Heat Exchangers for Efficient Air Conditioning and Drying	Project ID:	R030
Supervisor:	David Warsinger	Number of positions:	2
	Buildings consume over 41% of the energy in the US, and space cooling is a large portion of		
	this energy usage. Thus, there is a great need for energy efficient cooling technologies to help		
	improve the efficiency of buildings. The Membrane Heat Exchanger, developed by our lab, is		
	the most efficient membrane-based air conditioning process proposed to date. It achieves this		
	great efficiency enhancement by using nanostructured, water vapor selective membranes to		
	filter water vapor out of air before cooling so that cooling s	systems do not have to w	aste energy
Project Description:	on condensing the water vapor in air. The device we are developing offers an exciting solution		
	to an energy question that has existed for decades, and r	nodeling work has shown	that the
	proposed system uses 1.25-4 times less energy to provide the same cooling as conventional		
	systems. Thus, there is great interest and need to further study this technology through		
	experimental validation. This project is also very collaborative in that it involves researchers in		
	the areas of HVAC, material science, and membrane science and will benefit from		
	collaborations with researchers in chemical engineering a	nd environmental and eco	ological
	engineering as well.		
The student(s) who joins this lab will be expected to attend weekly lab meetings			
	meetings. They will be focusing on membrane fabrication, prototype development, and		
Final Deliverables:	evaluation. Contributions will include 3D CAD modeling, system control and data acquisition		
	design, membrane material fabrication and testing, and ample opportunities to assist with		
	technical writing efforts (journal articles, conference papers, grant submissions, and patent		
	application). Once the prototype device is de		
Option:	For pay		
Option Information:	12 hours/week, and 15 \$/hour		
	- Experience with CAD modeling (CATIA, SOLIDWORKS, etc.) - Experience with LabVIEW		
Desired Qualifications:	: control and data acquisition is beneficial. Course-related experience is also very		
	helpful Some background in prototype development/mai	nufacturing will be useful-	

Project name:	Fabrication and characterization of micro/nanoscale mechanical and optical devices	Project ID:	R031	
Supervisor:	Yung C. Shin	Number of positions:	1	
	Two-photon polymerization (TPP) is a unique and prominent additive manufacturing (AM)			
	technique that offers the capability of fabricating true 3D dimensional micro/nanostructures			
	with spatial resolution in the nanometer regime using a femtosecond laser. Given the			
	ever-longing demand for complex three-dimensional microstructures fine features in the			
Project Description:	semiconductor and biomedical domains, TPP presents an optimal solution. This research			
	involves the design, fabrication, and characterization of optical devices such as flat lenses			
	(metasurfaces), Fresnel lenses, micro lens arrays (MLAs), photonic crystals (PCs) etc. and/or			
	lattice structures which exhibit superior mechanical properties such as super hydrophobic			
	surfaces, mechanical metamaterials, drug delivery devices etc.			
	It is expected to submit weekly reports describing the findings and results of the research			
Final Deliverables	during the regularly scheduled meetings. A final written report is required for the final grade,			
rinal Deliverables.	which must contain a literature review, design of metal material, 3D printing of the designed			
	structure, all the experimental characterization and analysis results.			
Option:	For credits			
Option Information:	3 credits			
Desired Qualifications	Junior or higher standing with a minimum GPA of 3.4, Familiarity with CAD is desired, but not			
Desired Qualifications:	required.			

Project name:	Instrumentation of parallel microscale 3D printer	Project ID:	R032	
Supervisor:	Liang Pan	Number of positions:	3	
	Three-dimensional (3D) printing is routinely performed to create micro- and micro-scale			
	structures using different methods, such Stereolithography (SLA), Selective Laser Sintering (SLS), Fused Deposition Modeling (FDM), and Digital Light Process (DLP). Here we will			
Project Description:				
	assemble a team to experimentally create a new parallel micrscale 3D printer with software			
	infrastructure that can support a new operation mode that can expand print envolops by fast			
	stitching of subprints.			
Final Deliverables:	A working microscale 3D printer			
Option:	Discuss with advisor			
Option Information:	Options and details to be discussed with faculty advisor			
Desired Qualifications:	Junior or Senior in Schoole of ME. GPA > 3.3			

Project name:	Dynamic Micro Heat Pipe	Project ID:	R033
Supervisor:	Liang Pan	Number of positions:	3
	Scaling the heat pipes to microscale favors high working	efficiency and can potenti	ally offer
	high peak cooling capability for high power applications, such as cooling of supercomputers or		
Droigot Decorintion.	power electronics. Existing microscale manufacturing tec	hniques allow the quick c	eations of
Project Description:	complicated microflow structures, however the design and testing of the microscale heat pipes		
	are not currently implemented at high heating powers. This project will assemble a team of		
	students to work with current graduate students to design, fabricate and test novel microfluid		
	heat pipes.		
Final Deliverables:	A report and prototype heat pipe		
Option:	Discuss with advisor		
Option Information:	Options and details to be discussed with faculty advisor		
Desired Qualifications:	Junior and Senior in School of ME. GPA > 3.3		

Project name:	Machine Learning for Engineers	Project ID:	R034
Supervisor:	Carlos Corvalan	Number of positions:	3
	Machine Learning for EngineersThe intersection of data-	driven methods, machine	earning,
	and classical engineering is a rapidly growing field with transformative potential. Machine		
	learning provides a powerful framework that can enhance and even transform engineering		
Broject Description	research and industrial applications. This project will bring together machine learning and		
Project Description:	engineering mathematics to integrate modeling and simulation of engineering systems,		
	including fluid mechanics and heat transfer, with modern methods in data science. Students		
	will discuss and apply recent advances in scientific computing and machine learning that		
	enable data-driven discovery to be applied to a diverse range of engineering systems.		
Final Dolivorables:	Final deliverable: Working computer codes that leverage machine learning to solve		
Final Deliverables.	engineering problems.		
Option:	For credits		
Option Information:	3 credits		
Desired Qualifications:	Background in linear algebra, differential equations and scientific computing are desirable.		

Project name:	Next-Gen Semiconductor chips 3D stacking	Project ID:	R035
Supervisor:	Tiwei Wei	Number of positions:	2
	In the world of advanced computer technology, we're con	stantly striving to make co	omputers
	faster and more powerful. To achieve this, we're exploring	g a new way to connect co	omputer
	chips - by using small copper structures to stack them on top of each other, which improves		
	their performance.Normally, computer chips are connected using small solder bumps.		
Broject Description	However, there are issues with this method, such as the	bumps occasionally touch	ing each
Project Description:	other, causing electrical problems and making the connect	ction less reliable. We're a	Iso working
	on making these bumps smaller. Our solution is to use special copper structures. These		
	structures help the small bumps connect more easily and stay reliable. Furthermore, the solder		
	used for the bumps can fill these structures, creating a strong bond. In this project, we'll		
	explain how these copper structures can make our microchips work better when stacked		
	together.		
	1) Attend weekly meeting discussions with mentors and supervisors; 2) Prepare and present a		
Final Dalivarables	final oral presentation to faculty advisor/mentor. 3) Prepare and submit a final 1-page written		
Final Deliverables.	report to faculty advisor by the date specified by the faculty advisor. 4) Allocate 10-12 hours		
	per week for three research credits (approximately 4 hou	rs per week for each credi	t).
Option:	For credits		
Option Information:	3 credits		
Desired Qualifications	Interests in semiconductors and enthusiasm for material fabrication and characterizations;		
Desireu Qualifications.	Solid mechanics, heat transfer background.		

Project name:	Semiconductor Packaging & amp; Cooling for Next-Gen Wireless System	Project ID:	R036	
Supervisor:	Tiwei Wei	Number of positions:	2	
	In the 21st century, wireless tech, like cellphones and Wi-Fi, has exploded in scale and			
	complexity. But energy efficiency lags behind. By 2030, wireless tech could contribute up to			
	23% of global CO2 emissions. 5G tech, which uses millimeter wave tech for more bandwidth,			
Broject Description:	increases power usage. To handle this, wide bandgap se	miconductors are needed	, offering	
Project Description.	much higher power density. The heat generated, especia	lly in stacked chips, pose	s problems.	
	To cool high-power chips, we're exploring embedded microjet cooling through advanced glass			
	fabrication, incorporating tiny fluid channels directly into the chips. This innovation is vital for			
	efficient cooling in stacked chips.			
	1) Attend weekly meeting discussions with mentors and supervisors; 2) Prepare and present a			
Final Dolivorables:	final oral presentation to faculty advisor/mentor. 3) Prepare and submit a final 1-page written			
Final Deliverables.	report to faculty advisor by the date specified by the faculty advisor. 4) Allocate 10-12 hours			
	per week for three research credits (approximately 4 hours per week for each credit).			
Option:	For credits			
Option Information:	3 credits			
Desired Qualifications:	Interests in semiconductors and enthusiasm for material fabrication and characterizations;			
Desired Qualifications.	Solid mechanics, heat transfer or CFD, CAD skill			

Project name:	Enhancing Semiconductor Package Reliability through Thermo-Mechanical Modelin	Project ID:	R037	
Supervisor:	Tiwei Wei	Number of positions:	2	
	Thermal-mechanical modeling plays a pivotal role in the design and optimization of			
Project Description:	semiconductor chips and packaging systems. In the rapidly evolving world of electronics,			
	where miniaturization and performance enhancement are paramount, understanding the			
	intricate interplay between thermal and mechanical aspects is crucial. Semiconductor chips			
	generate heat during operation, and without effective thermal management, this heat can lead			
	to reduced performance and even catastrophic failures. In parallel, packaging technology,			
	such as flip-chip and wafer-level packaging, has become increasingly sophisticated to ensure			
	reliability and durability. Thermal-mechanical modeling provides a predictive framework to			
	assess the impact of thermal loads, thermal stresses, and mechanical deformations on			
	semiconductor chips and their packaging. Through accurate modeling, engineers and			
	researchers can make informed decisions to enhance the thermal and mechanical			
	performance of these crucial components, ultimately advancing the capabilities of electronic			
	systems.			
Final Deliverables:	1) Attend weekly meeting discussions with mentors and supervisors; 2) Prepare and present a			
	final oral presentation to faculty advisor/mentor. 3) Prepare and submit a final 1-page written			
	report to faculty advisor by the date specified by the faculty advisor. 4) Allocate 10-12 hours			
	per week for three research credits (approximately 4 hours per week for each credit).			
Option:	For credits			
Option Information:	3 credits			
Desired Qualifications:	Interests in semiconductors and enthusiasm for material fabrication and characterizations;			
	Solid mechanics, heat transfer background.			

Project name:	Thermal management for semiconductor chips	Project ID:	R038	
Supervisor:	Tiwei Wei	Number of positions:	2	
	In the United States, data centers account for approximately 2% of the country's total electricity			
Project Description:	consumption, and a significant portion of this energy is used for the cooling of			
	high-performance microchips. The objective of these initiatives is to improve data center			
	efficiency and reduce energy consumption, thereby contributing to the global effort to combat			
	climate change. Their strategy revolves around the implementation of a two-phase cooling			
	system, which involves the integration of microchannels filled with liquid directly into the			
	packaging of microchips. When these microchips generate heat, the liquid inside these			
	channels undergoes a phase change, transitioning to a vapor state, which effectively			
	dissipates the heat. Subsequently, this vapor condenses and is recycled to initiate the cooling			
	process anew. This innovative cooling method is particularly well-suited for high-performance			
	semiconductors, such as those commonly found in servers within data centers.			
Final Deliverables:	1) Attend weekly meeting discussions with mentors and supervisors; 2) Prepare and present a			
	final oral presentation to faculty advisor/mentor. 3) Prepare and submit a final 1-page written			
	report to faculty advisor by the date specified by the faculty advisor. 4) Allocate 10-12 hours			
	per week for three research credits (approximately 4 hours per week for each credit).			
Option:	For credits			
Option Information:	3 credits			
Desired Qualifications:	Interests in semiconductors and enthusiasm for material fabrication and characterizations;			
	Solid mechanics, heat transfer , CFD, or CAD, 3D printing.			