
ME 30800 FLUID MECHANICS

Course Outcomes [Related ME Program Outcomes in brackets]

- 1. Develop the ability to identify and classify the various *types of flows* one may encounter. [1]
- 2. Develop (from rigorous first principles) the *control volume formulation* of the basic laws with emphasis on conservation of mass and Newton's 2nd law. [1]
- 3. Apply the control volume formulation of the basic laws to model physical systems. [1]

COURSE NUMBER: ME 30800	COURSE TITLE: Fluid Mechanics
REQUIRED COURSE OR ELECTIVE COURSE: Required	TERMS OFFERED: Fall and Spring
RECOMMENDED TEXTBOOKS: P.J. Pritchard and J.W. Mitchell, Fox and McDonald's Introduction to Fluid Mechanics, 9th ed., John Wiley & Sons. P.M. Gerhart, A.L. Gerhart and J.I. Hochstein, Munson, Young and Okiishi's Fundamentals of Fluid Mechanics, 8th ed., John Wiley & Sons. F.M. White, Fluid Mechanics, 8th ed., McGraw-Hill.	PRE-REQUISITIES: ME 20000 – Thermodynamics I ME 26300 – Introduction to Mechanical Engineering Design, Innovation, and Entrepreneurship ME 27400 – Basic Mechanics II MA 26200 – Linear Algebra and Differential Equations
COORDINATING FACULTY: C. Wassgren & P. Vlachos	
COURSE DESCRIPTION: Continuum description, velocity field, fluid statics, manometers, basic conservation laws for systems and control volumes, dimensional analysis. Bernoulli's equation along a streamline and with head losses. Flow over submerged bodies, boundary layers. Viscous flows in pipes, turbomachinery, system performance. One-dimensional gas dynamics. ASSESSMENTS TOOLS: 1. Weekly homework. 2. Exams. 3. Lecture quizzes.	1 Develop the ability to identify and classify the various <i>types of flows</i>
NATURE OF DESIGN CONTENT: None	RELATED ME PROGRAM OUTCOMES: 1. Engineering fundamentals
PROFESSIONAL COMPONENT: 1. Engineering Topics: Engineering Science – 100% Engineering Design – 0%	
COMPUTER USAGE : Knowledge of word processing, spreadsheet software, and basic programming (for example, MATLAB) are necessary for homework assignments.	
COURSE STRUCTURE/SCHEDULE: Lectures – 3 days per week at 50 minutes	
PREPARED BY: J. Chen (Updated by I. Christov)	REVISION DATE: January 28, 2020