ME 26400

Introduction to Manufacturing for Mechanical Design

Course Outcomes [Related ME Program Outcomes in brackets]

- 1. Understand material properties and behavior for design and manufacturing [1,2]
- 2. Gain a fundamental knowledge of manufacturing processes. [2, 3]
- 3. Gain knowledge of the practice of measurements and manufacturing processes through laboratory experiments. [2, 3]
- 4. Enhance knowledge on the selection of materials and manufacturing processes for product design [1,2, 3, 4, 5,7]
- 5. Enhance technical communication skills through short technical lab reports. [3]

Metrology, Quality Control, and Materials

- 1. Metrology and quality measures
- 2. Measurement principles and Techniques
- 3. Properties of Materials

Machining Processes

- Mechanics of Machining Processes
- 2. Cutting Tools
- 3. Tool Life and Machinability
- 4. Production Machining Processes
- 5. CNC machining

Processing of Nonmetallic Materials

- Processing and Design of Composite
 Materials
- 2. Processing of Plastics

Other Manufacturing Processes

- 1. Forming Processes
- 2. Casting
- 3. Sheet metal forming
- 4. Additive Manufacturing

Design-Manufacturing Interface

- 1. Material selection for design
- 2. Design for manufacturing
- 3. Design for assembly and component integration

Laboratory Experiments

Typical laboratory experiments will include, but are not limited to:

- 1. Basic Measurement Principles and Practice (Dimension, Tolerance, Surface Roughness, and Geometry)
- 2. Basic Operation of Machine Tools (Lathe and Milling Machine)
- 3. CNC programming and CNC machining
- 4. 3D printing
- 5. Finishing, component integration, assembly, inspection and test

COURSE NUMBER: ME 26400	COURSE TITLE: Introduction to Manufacturing for Mechanical Design			
REQUIRED COURSE OR ELECTIVE COURSE: Required	TERMS OFFERED: Fall and Spring			
TEXTBOOK/REQUIRED MATERIAL:	PRE-REQUISITIES:			
TBD	MFET 163 Graphical Communication and Spatial Analysis			
COORDINATING FACULTY: Francisco Montalvo				
COURSE DESCRIPTION: Introduction to manufacturing processes for typical engineering materials. Basics of material	COURSE OUTCOMES [Related ME Program Outcomes in brackets]:			
properties and behavior for manufacturing processes. Material	1. Understand material properties and behavior for design and			
selection and manufacturing process selection for mechanical	manufacturing [1,2]			
design. Hands-on projects in the lab reinforce the knowledge of	2. Gain a fundamental knowledge of manufacturing processes.			
manufacturing processes.	[2, 3]			
ASSESSMENTS TOOLS:	3. Gain knowledge of the practice of measurements and			
1. Homework	manufacturing processes through laboratory experiments. [2, 3]			
2. Lab reports	4. Enhance knowledge on the selection of materials and			
3. Group Assignments	manufacturing processes for product design [1,2, 3, 4, 5,7]			
4. Final Reports and Presentations	5. Enhance technical communication skills through short			
NATURE OF REGION CONTENT. Cl	technical lab reports. [3] RELATED ME PROGRAM OUTCOMES:			
NATURE OF DESIGN CONTENT: Choosing appropriate				
materials and manufacturing processes for mechanical design; design for manufacturing.	1. Engineering fundamentals			
design for manufacturing.	2. Engineering design3. Communication skills			
PROFESSIONAL COMPONENT:	4. Ethical/Prof. responsibilities			
1. Engineering Topics: Engineering Science – 40%	5. Teamwork skills			
Engineering Design – 60%	6. Experimental skills			
COMPUTER USAGE: The lab projects require students to	7. Knowledge acquisition			
write reports and conduct data analysis.				
COURSE STRUCTURE/SCHEDULE:				
Lecture - 2 days per week at 50 minutes				
Lab - 2 days per week at 110 and 50 minutes				
, ,				
PREPARED BY: Martin Jun, Francisco Montalvo, Michael Sealy REVISION DATE: October 23, 2024				

Proposed Topics and Labs

Lecture	Topic	Lab	Lab Group G1	Lab Group G2
1	Introduction to manufacturing	1A		
2	Dimensions, tolerances, and surfaces 1	1B	Lab introduction and team/group selection	
3	Dimensions, tolerances, and surfaces 2	2A	Metrology 1	Manual Machining 1
4	Machining Operations 1	2B	Manual Machining 1	Manual Machining 2
5	Labor Day	3A	Manual Machining 2	Metrology 1
6	Machining Operations 2	3B	Manual Machining 3	Manual Machining 3
7	Sheet-metalworking processes 1	4A	Optional 1: Woodworking/Welding	Sheet metalworking 1
8	Sheet-metalworking processes 2	4B	Metrology 2	Sheet metalworking 2
9	Woodworking	5A	Sheet metalworking 1	Optional 1: Woodworking/Welding
10	Materials for manufacturing 1	5B	Sheet metalworking 2	Metrology 2
11	Materials for manufacturing 2	6A	Mastercam 1	
12	CNC machining 1	6B	Mastercam 2	
13	CNC machining 2	7A	Mastercam 2	
14	Project introduction	7B	CNC Introduction to Turning	
15	Fall / Spring Break	8A	Fall / Spring Break	
16	Cutting tool technology	8B	No lab	
17	Quality, defect, inspection, go/no-go	9A	Mastercam 4	
18	Industry speaker - Quality/ GD&T	9B	CNC Introduction to Milling	
19	Design for manufacturability 1	10A	Metrology 3	
20	Design for manufacturability 2	10B	Project Operational Plan	
21	Joining: welding/soldering 1	11A	Project: Design and Manufacturing 1	
22	Joining: welding/soldering 2	11B	Project: Design and Manufacturing 2	
23	Joining: assembly (bolts, nuts, and screws)	12A	Project: Manufacturing 1	
24	Assembly and Component Integration 1	12B	Project: Manufacturing 2	
25	Assembly and Component Integration 2	13A	Project: Component Integration, Assembly, Testing, and Modification 1	
26	Laser cutting	13B	Project: Component Integration, Assembly, Testing, and Modification 2	
27	Industry speaker – Additive Manufacturing	14A	Project: Competition and Validation 1	
28	Additive manufacturing 1	14B	Project: Competition and Validation 2	
29	Additive manufacturing 2	15A	Thanksgiving Break / Project and Report Preparation	
30	Thanksgiving Break / No lecture	15B	No lab / Project and Report Preparation	
31	No lecture	16A	Project Presentation and Report	
32	No lecture	16B	Project Presentation and Report	