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As his educational contributions, he has
written two monographs, Principles of Heat
Transfer in Porous Media and Principles

of Convective Heat Transfer, and an
undergraduate textbook, Principles of Heat
Transfer. He has been the recipient of the
College of Engineering Education Excellence
Award (2003) at the University of Michigan,
and departmental teaching awards. He
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(2001-2004) of the National Council of Pi
Tau Sigma (Mechanical Engineering Students
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advisor of the University of Michigan chapter
(1992-2004). Currently he is working on

the course notes for a new graduate course,
Heat Transfer Physics. The course offers

a unified treatment of phonon, electron,
fluid particle, and photon transport and
interaction. It combines the fundamentals

of statistical thermodynamics, transport

theories (including Boltzmann and stochastic
transport), molecular dynamics (including
lattice dynamics, with computer codes), solid-
state physics (including semiconductors), and
radiation transport, as related to heat transfer
and thermal energy conversion.

His research has been on macro and micro-
scale transport and interaction in porous
media. Current projects include molecular
dynamics simulation of phonon transport

in porous crystals (phonon localization),
laser cooling of ion-doped nano powders
(phonon band broadening and enhanced
photon absorption), and nano heat pipes
(dominated by adsorption/desorption
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results in the internationally recognized and
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1998) and is a member (1982-present) of
Committee on Theory and Fundamental
Research (K-8), Heat Transfer Division,
ASME. His research has been sponsored by
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Laser Cooling of Solids

With the recent increase in science content of graduate
engineering education, engineering academic
disciplines (such as heat transfer) evolve to add such
contents to the student classroom and research
experiences. Heat transfer physics describes atomistic
mechanisms of thermal energy storage, transport,
and conversion. Heat is stored in thermal motion of
electron, nucleus, and molecule, in various phases of
matter. These energy states and their population are
described by the classical and quantum statistical
mechanics and the combinatoric probabilities.
Transport of thermal energy is by electron, fluid
particle, and photon, with their particle/wave
descriptions, their thermal/diffusion/propagation/flow
velocities, and the scattering losses they encounter as
they travel. The mechanisms of energy transformation
amongst these energy carriers, and their rates,

are governed by the match of their energies, their
probabilities, and the various hindering-mechanism
rate limits. Conservation of energy describes the
interplay amongst energy storage, transport, and
conversion, from atomic to continuum scales.

As an example consider enhanced laser cooling of

ion doped nanocrystalline powders (e.g., Yb**: Y,0,).
This can be achieved by enhancing the anti-Stokes
off-resonance absorption, which is proportional to

the three design-controlled factors, namely, dopant
concentration, pumping field energy, and anti-Stokes
transition rate. The optimum dopant concentration

for cooling shows that higher dopant concentration
increases absorption, while decreasing quantum
efficiency. Using the energy transfer theory for
concentration quenching, the optimum concentration
corresponding to the maximum cooling power is
found. The pumping field energy is enhanced in
random nanopowders compared with bulk crystals
under the same irradiation, due to the multiple
scattering of photons. Photons are thus localized in the
medium and do not propagate, increasing the photon
absorption of the pumping beam. Using molecular
dynamics simulations, the phonon density of states
(DOS) of the nanopowder is calculated, and found to
have broadened modes, and extended, small tails at
low and high frequencies. The second-order electronic
transition rate for the anti-Stokes luminescence is
calculated using the Fermi golden rule, which includes
the influence of this phonon DOS, and is shown to have
enhancement effects on the laser cooling efficiency
using nanopowders. These three enhancement
mechanisms increase the number of the three
participating carriers (electron, photon, and phonon) in
the interacting volume.



