

2019 NSF EDSE Workshop October 7-8, Purdue University

From Euclidian Space to Riemann Manifold: Topology Optimization of Conformal Structures Using Extended Level Set Methods

Award #1762287

Shikui Chen (Stony Brook)

David Gu (Stony Brook)

Jianliang Xiao (UC Boulder)

State University of New York at Stony Brook

Topology Optimization on Surfaces

Architecture

Retrieved from https://www.ioshmagazine.com/article/as bestos-found-sydney-opera-houserenovation

Flexible Electronics

Retrieved from https://iopscience.iop.org/article/10.1088/0960-1317/23/5/055010

Aircraft

Retrieved from

https://altairhyperworks.com/ResourceLibrary.aspx?d iscipline=Optimization&category=Case%20Studies&i ndustry=All&product_service=All

Daily Life Elbo Chair- Generated in Project Dreamcatcher Retrieved from:

https://gallery.autodesk.com/fusion360/projects/ elbo-chair--generated-in-project-dreamcatchermade-with-fusion-360

Conformal Mapping Theory

Conformal Mapping: Angle-Preserving

Infinitesimal circles are mapped to Infinitesimal circles (Source: Professor David Gu, Stony Brook University)

Conformal Mapping is a **local scaling transformation** governed by a scalar function $\lambda : S \to \mathbb{R}$ (surface to Euclidean space). Advantages and Characteristics:

- I. The **angles** are **preserved**. (maps infinitesimal circles to infinitesimal circles)
- II. Transferring the PDEs on a surface to an equivalent representation on the 2D domain with the simplest form. (the scalar function λ).

By solving the Yamabe equation:

$$\frac{d\lambda(t)}{dt} = 2(\overline{K} - K)g_{ij}(t)$$

Conformal Mapping: φ

Angle Preserved!

Solving PDES on Manifold using Extended Level Set Method (X-LSM)

Merits:

- 1. Converting PDES on manifolds to PDES on Euclidean domains;
- 2. Using conformal mapping, the differential equation has the simplest form.

Numerical Experiment Implementation Part 1. Topology Optimization of Load Carrying Conformal Structure

Structure topology optimization of a vase

Minimizing Compliance Problem of linear elastic material

Min: $J(u) = \int_{\Omega} SED \ d\Omega$ Subject to: $a(u, v, \phi) = L(v, \phi)$ $V(\Omega) = V^*$

where SE-strain energy density $V(\Omega) = \int_{\Omega} d\Omega$ $a(u, v) = \int_{\Omega} \check{\varepsilon}(u) \mathbb{C}\check{\varepsilon}(v) d\Omega$ $L(v) = \int_{\Omega} fv d\Omega + \int_{\overline{\Omega}} tv d\overline{\Omega}$

Boundary Conditions

Vase model

Numerical Experiment Implementation Part 2. Structure Topology Optimization Design on Shell

Structure topology optimization of chair surface

Example 3: Ferromagnetic Soft Robot (FerroSoRo)

Boundary Conditions of the petal like structure

No Magnetic Field

Response to Magnetic Field

Flytrap FerroSoRo

Α

General

arbitrary topologies. easily transformed to solve other TO problems

Optimize the deformation demanded surfaces

e.g.: conformal electronics, stretchable circuits

Ko, Heung Cho et al., Nature, 2008.

Design for 4D printing

e.g.: determine the locations of active material and passive material

Ryan and Jennifer et al., Nature, 2016

THANKS!

Computational Modeling Analysis and Design Optimization Research Laboratory (CMADO Lab) Department of Mechanical Engineering Stony Brook University

Visit our webpage:

CMADO LAB@Stony Brook University http://me.eng.stonybrook.edu/~chen/

