CAREER: Multifidelity Modeling and Search Using Adaptive Field Prediction

Leifur Thor Leifsson

Computational Design Laboratory
Department of Aerospace Engineering
Iowa State University

October 8, 2019

NSF CMMI EDSE Award #1846862 – Start date: August 1, 2019

2019 NSF Workshop for Engineering Design and Systems Engineering (EDSE)
Purdue University, West Lafayette, Indiana, October 7-8, 2019
A variety of high-fidelity simulations are available in support of analysis and design optimization of engineered systems.

• Computational demands often mean advanced design techniques are not used to their fullest potential.

Motivation
Research idea

- How can the simulation prediction fields be used to enable the solution of new problems?

engineded device \[\xrightarrow{\text{predicted fields}}\]

state of the art

- extract QoI
- construct multifidelity models of the QoI

CAREER

- extract field features
- construct multifidelity models of the fields
- calculate QoI
One proposed approach

- Scientific machine learning (SciML) utilized for field regression
- Fuse s-levels of SciML information with multifidelity methods
Research plan

• Derive and characterize the approaches on engineering problems:

<table>
<thead>
<tr>
<th>Structural systems</th>
<th>Nondestructive testing systems</th>
<th>Fluid systems</th>
</tr>
</thead>
<tbody>
<tr>
<td>FEA of structures</td>
<td>Measurement simulations</td>
<td>Internal/external CFD</td>
</tr>
<tr>
<td>Strain field</td>
<td>Acoustic wave/eddy current fields</td>
<td>Flow field</td>
</tr>
</tbody>
</table>

- **Test central hypothesis using other engineering problems:**

- **Microwave devices**
 - electromagnetic simulation & design
 - fabrication
 - anechoic field measurements
 - post-processing
Thank you!