8.0 TWO-LEVEL FACTORIAL (2^K) DESIGNS

(UPDATED SPRING, 2005)

Surface finish of a part produced by a turning process is of interest (R_a value in μIN)

How is the surface finish affected, if at all, by the feed rate and the presence/absence of coolant?

Examine:

Low Level (-1) High Level (+1)

Feed at 2 levels: .005 ipr .015 ipr Cont. variable

Coolant at 2 levels: Absent Present Disc. variable

Conduct tests for all combinations of the 2 variables: $2 \times 2 = 4$ tests, k=2, $2^k=4$

	Actual values			Coded Levels	
Test	Feed	Coolan t	SF	X_1	X ₂
1	.005	Abs	25	-1	-1
2	.015	Abs	150	+1	-1
3	.005	Prs	15	-1	+1
4	.015	Prs	120	+1	+1

- Is feed important?
- Is coolant important?
- How do the important variables affect the response?

Graphical Representation of the Design

Effect of Feed (X_1)

Compare tests that differ only in the level of feed

At low coolant: 150 - 25 = 125At High coolant: 120 - 15 = 105

On the average, the effect of increasing the feed from the lo to the hi levels is:

$$E_f = E_1 = \frac{125 + 105}{2} = 115 \mu IN$$

Effect of Coolant (X₂)

At low feed: 15 - 25 = -10At hi feed: 120 - 150 = -30

On the avg., the effect of increasing the coolant from the lo to hi level is:

$$E_c = E_2 = \frac{(-10) + (-30)}{2} = -20 \mu IN$$

Another Way of looking at it:

• Collapse design in coolant direction:

$$E_f = E_1 = 135 - 20 = 115$$

• Collapse design in feed direction:

$$E_c = E_2 = 67.5 - 87.5 = -20$$

20 135
-1 Feed
$$(X_1)$$
 +1

87.5 67.5
-1 Coolant (X_2) +1

Interaction Effect:

Characterizes the lack of additivity between the feed and coolant effects.

- Effect of feed depends on coolant level
- Effect of coolant depends on feed level

Coolant Effect of Feed

(+) 105

(-) 125 Feed x Coolant

Diff = -20 Int =
$$\frac{-20}{2}$$
 = -10

= E_{12} = E_{fc}

Feed Effect of Coolant
(+) -30
(-) Feed x Coolant
$$Diff = -20 = -10$$

$$= E_{21} = E_{cf}$$

50

Note that $E_{12} = E_{21} < --$ This is always true.

A Quicker Method to Calculate Effects:

Design or Calculation Matrix

Test	Mean or I	X_1	X_2	X_1X_2	Y
1	+	-	-	+	25
2	+	+	-	-	150
3	+	-	+	-	15
4	+	+	+	+	120

• Feed Effect (Product of X₁ and y columns)

$$E_f = \frac{-25 + 150 - 15 + 120}{2} = 115 = E_1$$

of "+" signs in x₁ column

• Coolant Effect (Product of X₂ and y columns)

$$E_c = E_2 = \frac{-25 - 150 + 15 + 120}{2} = -20$$

• Feed x Coolant Interaction Effect

$$E_{fc} = E_{12} = \frac{+25 - 150 - 15 + 120}{2} = -10$$

• Average is

$$Avg = \frac{25 + 150 + 15 + 120}{4} = 77.5$$

So,

Avg. =
$$77.5E_2 = -20$$

 $E_1 = 115E_{12} = -10$

For a 2 level factorial design, we are characterizing the response as:

$$y = b_0 + b_1 x_1 + b_2 x_2 + b_{12} x_1 x_2 + \varepsilon$$

 ε is assumed to be NIID $(0, \sigma_y^2)$ and characterizes the differences between the true functional relationship & the postulated one

From the data/experiment we get

$$\hat{y} = \hat{b_0} + \hat{b_1}x_1 + \hat{b}_2x_2 + \hat{b}_{12}x_1x_2$$
or $\hat{y} = avg + \frac{E_1}{2}x_1 + \frac{E_2}{2}x_2 + \frac{E_{12}}{2}x_1x_2$

$$\hat{b}_i = \frac{E_i}{2} \text{ is an estimate of } b_i$$

Why divided by 2?

Two-Way Diagram - Helps to interpret 2 - factor interactions

$$b_{12} = \frac{E_{12}}{2} = \frac{-10}{2} = -5; b_0 = avg = 77.5$$

Difference between the individual slopes and the avg. slope characterized by interaction.

Model predictions:

Test
$$\hat{y} = 77.5 + 57.5x_1 - 10x_2 - 5x_1x_2$$
 \hat{y}
1 $\hat{y} = 77.5 + 57.5 (-1) - 10 (-1) - 5 (+1)$ 25
2 $\hat{y} = 77.5 + 57.5 (+1) - 10 (-1) - 5 (-1)$ 150
3 $\hat{y} = 77.5 + 57.5 (-1) - 10 (+1) - 5 (-1)$ 15
4 $\hat{y} = 77.5 + 57.5 (+1) - 10 (+1) - 5 (+1)$ 120

Note that all the \hat{y} 's are = to y's when all the model terms are included.

Return to the Surf. Fin. Case Study Coolant

Calculated effect estimates:

Avg. =
$$77.5E_2 = -20$$

 $E_1 = 115E_{12} = -10$

For a 2^2 factorial design, we describe the resp as:

$$y = b_0 + b_1 x_1 + b_2 x_2 + b_{12} x_1 x_2 + \varepsilon$$

Based on the Data, we obtain the fitted model response

$$\hat{y} = \hat{b_0} + \hat{b}_1 x_1 + \hat{b}_2 x_2 + \hat{b}_{12} x_1 x_2$$

Model to predict response $\hat{y} = 77.5 + 57.5x_1 - 10x_2 - 5x_1x_2$

Noted that with all terms in the prediction model, that $\hat{y}_i = y_i$

What is the predicted response when f = .010 and coolant = present?

The General Procedure to Study a Process

- Identify what you believe to be the important variables
- Fix as many factors in the environment as possible reduce the level of noise more sensitive comparisons
- Perform a 2-level factorial design underlying model

$$y = b_0 + b_1 x_1 + b_2 x_2 + b_3 x_3 + \dots$$

$$+ b_{12} x_1 x_2 + b_{13} x_1 x_3 + b_{14} x_1 x_4 + \dots$$

$$+ b_{123} x_1 x_2 x_3 + b_{124} x_1 x_2 x_4 + \dots$$

$$+ b_{1234} x_1 x_2 x_3 x_4 + \dots$$

- Based on data develop fitted model.
- Check model adequacy to be described later
- From experiment or model
- identify/interpret important variables or interactions more on this soon
- Use model to optimize process, drive the response to desired value
- confirmatory tests in actual environment

Once the process has been centered at \hat{y} , we will see variation in the response

The effects we calculate attempt to answer the question: "How does the

 μ change as a function of $x_1, x_2, \& x_3$ ".