6.0 LATIN SQUARE DESIGN

(Updated Spring 2001)

So far:

- Independent t-test (one variable studied, 2 levels for variable)
- Paired t-test (one variable studied, 2 levels, blocking)
- One-Way ANOVA (one variable studied, > 2 levels)
- Two-Way ANOVA (2 variables blocking, > 2 levels for each variable)

3 Variables (4 levels each)

Source degree of freedom

Mean 1
variable 1 3
variable 2 3
variable 3 3

Resid 54

Total 64 = 4 • 4 • 4

Most of the information going into the estimation of S_{res}^2 Can we get the "same information" with less tests? YES!

Set up Square-Two-Way ANOVA

Introduce 3rd variable so as not to bias the results for the other two variables.

An example: Want to Study MPG

Variable	1st Level	2nd	3rd	4th
Car	1	2	3	4
Driver	I	II	III	IV
Fuel Additive	A	В	C	D

Car(j)

Driver (i)	1	2	3	4
I	A 21	B 26	D 20	C 25
II	D23	C 26	A 20	B 27
III	B 15	D 13	C 16	A 16
IV	C 17	A 15	B 20	D 20

Note that each Fuel Additive appears exactly once in each row and column.

$$\underline{H_0}$$
: $\mu_1 = \mu_2 = \mu_3 = \mu_4 \&$

$$\mu_I = \mu_{II} = \mu_{III} = \mu_{IV} \&$$

$$\mu_A = \mu_B = \mu_C = \mu_D$$

Model Form:

$$y_{ijk} = \eta + K_i + D_j + A_k + \varepsilon_{ijk}$$

Pred MPG only include significant terms $\hat{y}_{ijk} = \hat{\eta} + \hat{K}_i$

(If only car significant)

Means for each variable level

<u>Cars</u>	<u>Drivers</u>	<u>Additives</u>
1: =19	I:=23	A:=18
2: 20	II:24	B:22
3: 19	III:15	C:21
4: 22	IV:18	D:19
y = 20		
$S_{cars} = (19-20)^2 4 +$	$-(20-20)^2 4 + (19-20)$	2 4+(22-20) 2 4 =24

Source	S. of S.	DF	MS	F
Average	6400	1	6400	
Cars	24	3	8	3.00
Drivers	216	3	72	27.00*
Additives	40	3	13.33	5.00*
Residuals	16	6	2.67	
Total	6696	16		

 $F_{3.6..95} = 4.76$ (* Significant F values)

Therefore, Drivers and Additives are significant.

Significant Differences between Driver & Additive Means.

No significant Differences between Cars.

$$\sigma_y^2$$
 estimated by $s_{res}^2 = 2.66 = s_y^2$
 $s_y = 1.634$ = estimate of $\eta = 20$

Reference $\mathrm{Dist}^{\underline{n}}$ for Car, Driver, & Treatment Additive Means. Calculate t for each mean & compare to t_6 Each mean based on 4 observations

n	4	4	4	4
s -	0.817	0.817	0.817	0.817
y _{car}	19	20	19	22
t _{car}	-1.22	0	-1.22	2.45
y _{Driver}	23	24	15	18
t _{Driver}	3.67	4.90	-6.12	-2.45
y _{Additive}	18	22	21	19
t _{Additive}	-2.45	2.45	+1.22	-1.22

$$= \begin{bmatrix} 21 & 25 & 22 & 24 \\ 23 & 25 & 22 & 26 \\ 17 & 14 & 16 & 13 \\ 19 & 16 & 20 & 17 \end{bmatrix}$$

Model Residuals, $e_{ijk} = y_{ijk} - \hat{y}_{ijk}$

$$e = \begin{bmatrix} 21 & 26 & 20 & 25 \\ 23 & 26 & 20 & 27 \\ 15 & 13 & 16 & 16 \\ 17 & 15 & 20 & 20 \end{bmatrix} - \begin{bmatrix} 21 & 25 & 22 & 24 \\ 23 & 25 & 22 & 26 \\ 17 & 14 & 16 & 13 \\ 19 & 16 & 20 & 17 \end{bmatrix} = \begin{bmatrix} 0 & 1 & -2 & 1 \\ 0 & 1 & -2 & 1 \\ -2 & -1 & 0 & 3 \\ -2 & -1 & 0 & 3 \end{bmatrix}$$

Residual Plots

- Dot Diagram for all e's
- Dot diagram for each level of Car
- Dot diagram for each level of Driver
- Dot diagram for each level of Fuel Additive
- e's vs. ŷ

- e's vs. time
- For replicated data (y Ȳ cell) vs. Ȳ cell
 Graeco-Latin Sqs. (4 variables)
 Hyper Graeco-Latin Sqs. (5 variables)