
14.0 RESPONSE SURFACE METHODOLOGY (RSM)
(Updated Spring 2001)

So far, we’ve focused on experiments that:

• Identify a few important variables from a large set of candidate vari-
ables, i.e., a screening experiment.

• Ascertain how a few variables impact the response

Now we want to answer the question: “What specific levels of the 
important variables produce an optimum response?”

How do we get from starting position  to optimum position 

, “top of the hill”?

Our approach will be based on characterizing the true response surface, 
 

where  is the mean response and  is the error, with a model, .

RSM: An experimental optimization procedure:

1. Plan and run a factorial (or fractional factorial) design near/at our 

starting point.  
2. Fit a linear model (no interaction or quadratic terms) to the data.
3. Determine path of steepest ascent (PSA) - quick way to move to the 
optimum - gradient based
4. Run tests on the PSA until response no longer improves.
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5. If curvature of surface large go to step 6, else go to step 1
6. Neighborhood of optimum - design, run, and fit (using least squares) a 
2nd order model.
7. Based on 2nd order model - pick optimal settings of independent 
variables.

Example: 

Froth Flotation Process - Desire to whiten a wood pulp mixture.

2 independent variables:

(1) Concentration of environmentally safe bleach 
(2) Mixture temperature. 

Current operating point: 

%Bleach = 4%, Temp = 80oF. we believe we are well away from the 
optimum.

Allowable variable ranges:
0-20% Bleach     60-130 Temp.

An initial 22 factorial design

Variable Low Level Midpoint High Level

(1)% Bleach 2 4 6

(2) Temp 75 80 85

-1 +1

-1

+1

19 31

4428

ŷ 29= ŷ 32=

x1

x2
Averge=30.5
E1=14
E2=11
E12=2  (It is small relative to E1 and 

E2, so the response surface is 
fairly linear)
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Linear model: 

Fitted model is: 

A one unit change in x1 is a change of 2% in Bleach.
A one unit change in x2 is a change of 5 deg. in Temperature.

x1 = , Bleach% = 2x1+4

x2 = , Temp = 5x2 +80

We want to move from our starting point (x1 = 0, x2 = 0 or % Bleach = 4, 
Temp = 80) in the direction that will increase the response the fastest. 
Thus, we want to move in a direction normal to the contours. 

Path of steepest ascent (PSA): line passing through point (x1 = 0, x2 = 0) 
that is perpendicular to the contours.

• Define contour passing through (0,0) 

• Relation between x1 & x2 for this contour 7x1 + 5.5x2 =0 or 

             x2 = 

• Line normal to this one (slope of PSA = )

              x2 =  

• Interpretation: for a one unit change in x1, x2 must change by 5.5/7.0 
units to remain on the PSA.    A 7 unit change in x1 -> a 5.5 unit change 
in x2.

• Gradient of  may also be used to determine PSA.

Let’s define some points (candidate tests) on the path of steepest ascent 
(PSA)

y b0 b1x1 b2x2 ε+ + +=

ŷ 30.5 7x1 5.5x2+ +=

%Bleach-4
2--------------------------

Temp - 80
5-------------------------

ŷ 30.5 7x1 5.5x2+ + 30.5= =

7x1–
5.5-----------

1–
 contour slope----------------------------------

5.5x1
7-------------

ŷ
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Since it appears that the response surface is fairly linear (E12 is small) 
where we conducted tests, no reason to examine/conduct test 1 or 2.       
Run 1st test on or beyond boundary defined by x1, x2 = + 1.

Continue running tests on the PSA until response no longer increases. 
Highest response occurs at (Bleach = 13%, Temp = 98o). Run new factorial 
at this point.

Ran initial factorial design - defined path of steepest ascent - moved on 
PSA to

Bleach=13%, Temperature = 98o, Whiteness = 86%.

Conduct another factorial design near this point

Candidate
Test

x1 x2= 
%Bleach 
= 2x1+4

Temp 
=5x2+80 y

1 0 0 4 80

2 0.5 0.39 5 82

3 1.0 0.79 6 84 43

4 1.5 1.18 7 86 49

5 2.0 1.57 8 88 52

6 2.5 1.96 9 90 59

7 3.0 2.36 10 92 66

8 3.5 2.75 11 94 75

9 4.0 3.14 12 96 81

10 4.5 3.54 13 98 86

11 5.0 3.93 14 100 80

12 5.5 4.32 15 102 69

13 6.0 4.71 16 104

5.5x1
7-------------
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              describes response surface with a plane.

At x1 = 0, x2 = 0,  = 79

The combinations of (x1, x2) that give  =79 are specified by:

         3x1 -2.5 x2 =0

         x2 =        <------ (x1, x2) relationship along  = 79 contour

         PSA: x2 =        or x1 = -1.2x2 

Let’s follow the PSA but take steps in the x1 direction since  is bigger 
than E2.

-1 +1

-1

+1

75 88

7677

x1

x2 Averge=79
E1=6
E2=-5
E12=-7(It is fairly large) 

92

102

12 14 Bleach

Temp

ŷ 79 3x1 2.5x2–+=

ŷ

ŷ

3
2.5-------x1 ŷ

2.5–
3----------x1 0.833x1–=

E1
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Highest response at Bleach 14.50%, Temp 90.8o     ----->    92% Whiteness.

Note that we weren’t able to move as far along the path before we “fell 
off”.

We now believe we are fairly close to the optimum, so we must 
characterize the response surface with more than a plane, perhaps a model 
of the form:

 

To estimate the b’s in this model, we need more than a 2 - level factorial 
design.   A Central Composite Design (CCD) is more efficient than a 3-
level factorial design.

Given the results of a 2nd order design - must use least squares (linear 
regression) to estimate the b’s. We will examine the topic of regression 
after we finish up the RSM procedure for our example.

Fit the following model to the response surface near the point: 
  %Bleach=14.50, Temp = 90.8, Whiteness=92%

Candidate 
Test

x1
x2= -

.833x1

%Bleach 
= 13+x1

Temp 
=97+5x2

y

1 0 0 13 97

2 0.5 -0.4165 13.5 94.9

3 1.0 -0.833 14 92.8 88

4 1.25 -1.04125 14.25 91.8 90

5 1.5 -1.2495 14.50 90.8 92

6 1.75 -1.4578 14.75 89.7 89

7 2.00 -1.666 15.00 88.7 84

8 2.25 -1.87425 15.25 87.6

9 2.50 -2.0825 15.50 86.6

10 2.75 -2.29075 15.75 85.5

11 3.00 -2.50 16.00 84.5

y b0 b1x1 b2x2 b12x1x2 b11x1
2 b22x2

2 ε+ + + + + +=
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Note a small change in nomenclature: 
use B’s as the model parameter to be estimated, 
use b’s as the estimate of the parameter.

So, we are assuming the response surface can be characterized by the 
model:

 

The fitted model will be of the form:

 

Three-level Factorial Design

For three-level factorial designs, or  designs, the number of tests in the 

y B0 B1x1 B2x2 B12x1x2 B11x1
2 B22x2

2 ε+ + + + + +=

ŷ b0 b1x1 b2x2 b12x1x2 b11x1
2 b22x2

2+ + + + +=

b
˜

b0

b1

b2

b12

b11

b22

xT

˜
x
˜

( )
1–
x
˜
Ty

˜
= =

x1

x2

x1

x2

x3

-1 0 +1

-1

0

+1

-1 0 +1

-1

0

+1

-1
0 +1

3k
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design is , where k is the number of variables being examined in the 
experiment.

Central Composite Design

In general, a central composite design (CCD) consists of  points that 
form the base design, 2k star points, and several center points.

Number of Factorial Points, F = ,     : rotatability property - 

variance contours of  are concentric circles. Unif. Prec.: variance at origin 
same as variance a unit away from origin.

Variables 2 3 4 5

Tests 9 27 81 243

3k

x3

x1

x2

-1 0 +1 +α-α

-1

0

+1
+α

-α

x1

x2

-1 0 +1 +α-α

-1

0

+1
+α

-α
-1

0
+1 +α

-α

Central Composite Designs (adapted from Montgomery)

k 2 3 4 5 6

Factorial Portion = F 4 8 16 32 64

Axial Points 4 6 8 10 12

α 1.414 1.682 2.000 2.378 2.828

Center Points (unif. prec.) = n 5 6 7 10 15

Center Points (orthog.) = n 8 9 12 17 24

Total Tests (unif. prec.) = N 13 20 31 52 91

Total Tests (orthog.) = N 16 23 36 59 100

2k

2k α F( )1 4⁄=

ŷ
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Variable Levels

Test Plan

Calculating the Parameter Estimates

                  

-α = -  -1 0 +1 +α = +  

Bleach (%) 13.1 13.5 14.5 15.5 15.9

Temp (deg) 84 86 91 96 98

Test x1 x2 %Bleach Temp

1 -1 -1 13.5 86
2 +1 -1 15.5 86
3 -1 +1 13.5 96
4 +1 +1 15.5 96
5 - 0 13.1 91

6 + 0 15.9 91

7 0 - 14.5 84

8 0 + 14.5 98

9 0 0 14.5 91

2 2

2

2

2

2

x
˜

1 1– 1– +1 +1 +1
1 +1 1– 1– +1 +1
1 1– +1 1– +1 +1
1 +1 +1 +1 +1 +1

1 2– 0 0 2 0

1 + 2 0 0 2 0

1 0 2– 0 0 2

1 0 + 2 0 0 2
1 0 0 0 0 0

= y
˜

87
85
89
83
86
82
98
87
92

=
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The fitted model is shown in the graph below

x
˜
Tx

˜
( )

9 0 0 0 8 8
0 8 0 0 0 0
0 0 8 0 0 0
0 0 0 4 0 0
8 0 0 0 12 4
8 0 0 0 4 12

=

x
˜
Tx

˜
( )

1–

1 0· 0 0 0.5– 0.5–
0 0.125 0 0 0 0
0 0 0.125 0 0 0
0 0 0 0.25 0 0
0.5– 0 0 0 0.344 0.219
0.5– 0 0 0 0.219 0.344

=

x
˜
Ty

˜
( )

789
13.657–
15.556–

4–
680
714

=

b
˜

b0

b1

b2

b12

b11

b22

xT

˜
x
˜

( )
1–
x
˜
Ty

˜

92
-1.707
-1.945
-1.000
-4.563
-0.313

== =
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Linear Regression

To describe the data above, propose the model: 

Fitted model will then be     
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Want to select values for  that minimize .

Define : the model residual Sum of Squares.

Minimize 

To find minimum S, take partial derivatives of S with respect to , 

set these equal to zero, and solve for .

Simplifying, we obtain:

 

These two equations are known as “Normal Equations”.
The values of  that satisfy the Normal Equations are the least 
squares estimates -- they are the values that give a minimum S.

In matrix form

b0&b1 yi ŷi–( )2

i 1=

n 6=

∑

S b0 b1,( ) yi ŷi–( )2

i 1=

n 6=

∑=

S b0 b1,( ) yi ŷi–( )2

i 1=

n 6=

∑ yi b0– b1xi–( )2

i 1=

n 6=

∑= =

b0&b1

b0&b1

b0∂
∂ S b0 b1,( ) 2Σ yi b0– b1xi–( ) 1–( ) 0==

b1∂
∂ S b0 b1,( ) 2Σ yi b0– b1xi–( ) xi–( ) 0==

Σyi– Σbo Σb1xi+ + 0=

Σxiyi– Σboxi Σb1xi
2+ + 0=

nb0 b1Σxi+ Σyi=

b0Σxi b1Σxi
2+ Σxiyi=

b0&b1
                                                                                 103



 = Least Squares Estimates = 

        

         = 

,  are the values of  &  that minimize S, the Residual Sum of 
Squares.

 =  = an estimate of 

 =  = an estimate of 

n Σxi

Σxi Σxi
2

b0

b1 
 
  Σ yi

Σ xiyi
 
 
 
 
 

=

b0
*

b1
*

 


 


  n Σxi
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1
nΣxi

2 Σxi( )2–
----------------------------------- Σxi

2 Σxi–
Σxi– n

Σ yi
Σ xiyi

 
 
 
 
 

=

1
nΣxi

2 Σxi( )2–
----------------------------------- Σxi

2Σyi ΣxiΣxiyi–
ΣxiΣyi– nΣxiyi+

=

b0
*

b1
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1.4667
0.9143

b0
* b1

* b0 b1

b0
* B̂0 B0

b1
* B̂1 B1
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Matrix Approach

: Vector of Observations = ,

: Matrix of Independent Variables (Design Matrix) =  

 = Vector of Observations = =

 coefficients = 

0
1
2
3
4
5
6
7
8

0 2 4 6 8

X

Y

y
˜

2
3
5
5
7
6

x
˜

1
1
1
1
1
1

1
2
3
4
5
6

ŷ
˜

ŷ1

ŷ2

:
:

ŷn

x
˜
b
˜

b
˜

b0

b1
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 = Vector of Prediction Errors =  

 = 

Want to Min  or Min 

Take derivative with respect to b’s and set = 0

Therefore,

 

It is analogous to 

Re-run experiments several times

If true model is y = B0 +B1 x + ε

Then E(b0) = B0,      E(b1)=B1,         E[ ] = 

e
˜

e1

e2

:
:
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b
˜
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x
˜
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  n Σx

Σx Σx2

1–
Σy
Σxy 

 
 

=

b0

b1 
 
  1.4667

0.9143 
 
  b0

b1 
 
  1.5309

0.9741 
 
  b0

b1 
 
  1.5512

1.0134 
 
 

=,=,=

b
˜

B
˜
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where  describes the experimental error variation in the y’s( ).

For our example,     .

If  (or ) is unknown, we can estimate it with 

and for the example, 

          standard error of b0 

          standard error of b1 

Marginal Confidence Interval for Parameter Values

Given our parameter estimates, we can develop a 100(1-α)% confidence 
intervals for the unknown parameter values. The confidence intervals take 

B0

b0

Var b
˜
( ) x

˜
Tx

˜
( )

1–
σy

2=

σy
2 σε

2

Var b
˜
( )

Var b0( ) Cov b0 b1,( )

Cov b0 b1,( ) Var b1( )
=

σy
2 σε

2

s2 y ŷ–( )T y ŷ–( )
n - # of parameters( )

-------------------------------------------------- eTe
n p–------------

Sres
ν

---------= = =

sy
2

yi yiˆ–( )
2

i 1=

n 6=

∑
n 2–-------------------------------- 0.67619= =

Var b
˜
( ) x

˜
Tx

˜
( )

1–
sy

2 0.586 0.135–
0.135– 0.039

= =

)

sb0

2 0.586 sb0
, 0.767= =

sb1

2 0.039 sb1
, 0.197= =
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the form:

For our example (t4,0.975 = 2.776),

For B0: , 

For B1: , 

Note that these confidence intervals do not consider the fact that the 
parameter estimates may be correlated. 

Joint Confidence Interval for Parameter Values

Joint Confidence Interval (approximately) is bounded by a Sum of Squares 
Contour, S0. Consider all coefficients simultaneously,

     

where

Sum of Squares contours are only circles if , are uncorrelated - 

(xTx)-1 is diagonal.

Sum of Squares often contours appear as ellipses.

Confidence Interval for Mean Response

The predicted response at an arbitrary point, , is . Due to the 

uncertainty in the b’s, there is uncertainty in  (remember  is the best 

estimate available for the mean response at ). 

 =  

bi t
ν 1 α

2---–,
sbi±

1.4667 2.776( )± 0.767( ) 1.4667 2.125±

0.9143 2.776( )± 0.197( ) 0.9143 0.546±

S0 SR 1 p
n p–------------Fp n p 1 α–,–,+ 

 =

SR S b
˜
( ) yi ŷi–( )2

i 1=

n

∑= =

b0&b1

x
˜
o ŷ0 x

˜
ob

˜
=

ŷo ŷo
x
˜
o

Var ŷ0( ) x0 x
Tx( )

1–
x0
Tσy

2
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of course, if the variance must be estimated from the data, we obtain:

 

We can develop a 100( )% C.I. for the true mean response at  

( ):

Prediction Interval

Even if we know with certainty the  for a given , there would still be 
variation in the responses due to system noise(ε).

The variance of the mean of g future trials at  is:

 

We can define limits within which the mean of g future observations will 
fall. These limits for a future outcome are known as a 100 (1-α)% 
prediction interval. 

Var ŷ0( ) x0 x
Tx( )

1–
x0
Tsy

2=

)

1 α– x0
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ŷ t
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2
---–,
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2---
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Model Adequacy Checking

1. Residual Analysis
The model adequacy can be checked by looking at the residuals. The
normal probability plot should not show violations of the normality
assumption. If there are items not included in the model that are of
potential interest, then the residuals should be plotted against these omitted
factors. Any structure in such a plot would indicate that the model could be
improved by the addition of that factor. 

2. F test
If the sum of square of the residuals of the model is S0. The sum of squares
of the residuals of a new model with s factors added is S1, then 

and 

where n is the number of total observations, and p is the number of param-
eters in the original model.

y0̂ t
ν 1 α

2---–,
± s2

g---- Var ŷ0( )+
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2---)
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                                                                                 110


	Heading1 - 14.0 Response Surface Methodology (RSM)
	Heading2 - Three-level Factorial Design
	Heading2 - Linear Regression
	Heading2 - 
	Heading2 - Marginal Confidence Interval for Parameter Values
	Heading2 - Joint Confidence Interval for Parameter Values
	Heading2 - Prediction Interval
	Heading2 - Model Adequacy Checking


