13.0 BICYCLE EXAMPLE

(Updated Spring 2005)

Interested in time it takes to pedal up a hill. 7 variables of interest:

Variable	Low	High
1-Set	Up	Down
2-Dynamo	Off	On
3-Handlebars	Up	Down
4-Gear	Low	Medium
5-Raincoat	On	Off
6-Breakfast	Yes	No
7-Tires	Hard	Soft

Test	I	1	2	3	12	13	23	123
1	+	-	-	-	+	+	+	-
2	+	+	-	-	-	-	+	+
3	+	-	+	-	-	+	-	+
4	+	+	+	-	+	-	-	-
5	+	-	-	+	+	-	-	+
6	+	+	-	+	-	+	-	-
7	+	-	+	+	-	-	+	-
8	+	+	+	+	+	+	+	+

Introduce variables 4,5,6,&7 as follows:

4=12 I=124

 $5=13 \Rightarrow I=135$ Generators

6=23 I=236

Selected generator member of family: $I = \pm 124 = \pm 135 = \pm 236 = \pm 1237$

Defining relationship:

I=124=135=236=1237

2@ a time =2345=1346=347=1256=257=167

3@ a time = 456=1457=2467=3567

Run the experiment.

Test	1	2	3	4	5	6	7	y
1	ı	-	-	+	+	+	-	69
2	+	-	-	-	-	+	+	52
3	-	+	-	-	+	-	+	60
4	+	+	-	+	-	-	-	83
5	-	-	+	+	-	-	+	71
6	+	-	+	-	+	-	-	50
7	-	+	+	-	-	+	-	59
8	+	+	+	+	+	+	+	88

Use Base design calc. matrix to calc l_i 's

$$\begin{aligned} &\mathbf{l}_1 = (-69 + 52 - 60 + 83 - 71 + 50 - 59 + 88)/4 = 3.5 \\ &\mathbf{l}_{123} = (-69 + 52 + 60 - 83 + 71 - 50 - 59 + 88)/4 = 2.5 \\ &\mathbf{l}_I = 66.5 \text{ est I} \\ &\mathbf{l}_1 = 3.5 \text{ est } 1 + 24 + 35 + 67 \\ &\mathbf{l}_2 = 12.0 \text{ est } 2 + 14 + 36 + 57 \\ &\mathbf{l}_3 = 1.0 \text{ est } 3 + 15 + 26 + 47 \\ &\mathbf{l}_{12} = 22.5 \text{ est } 12 + 4 + 37 + 56 \\ &\mathbf{l}_{13} = 0.5 \text{ est } 13 + 5 + 27 + 46 \\ &\mathbf{l}_{23} = 1.0 \text{ est } 23 + 6 + 17 + 45 \\ &\mathbf{l}_{123} = 2.5 \text{ est } 34 + 25 + 16 + 7 \end{aligned}$$

- Could plot *l*'s on NPP to find important ones
- In this case, we know from past experiments that $\sigma_y = 3$

$$\sigma_e^2 = \sigma_{effect}^2 = \frac{4\sigma_y^2}{N}$$

therefore

$$\sigma_e = \left\lceil \frac{4 \bullet 3^2}{8} \right\rceil^{\frac{1}{2}} = \sqrt{4.5} \approx 2.1$$

It can be easily found out that l_2 and l_{12} are statistically significant with 95% confidence.

Simple conclusion: μ_2 & μ_4 are important

Could also be: μ_2 & μ_{12} important or μ_2 & μ_{14} important or...

To unconfound, sort out what is/is not important, let's run another 8 tests. Overlaying our knowledge on the experiment results suggests that probably 4 & 14 is important, 2nd experiment will unconfound 4 and its interactions.

Test	1	2	3	4	5	6	7	y
9	ı	-	-	1	+	+	1	63
10	+	-	-	+	-	+	+	82
11	-	+	-	+	+	-	+	73
12	+	+	-	-	-	-	-	53
13	-	-	+	-	-	-	+	64
14	+	-	+	+	+	-	-	84
15	-	+	+	+	-	+	-	72
16	+	+	+	ı	+	+	+	45

Signs of column 4 in this recipe matrix are opposite/flipped/ "folded" from those of 1st recipe matrix. All the other signs are the same.

Let's examine the recipe matrix to see what the generators are for this 2nd 2^{7-4} design. 4=-12, 5=13, 6=23, 7=123. So the defining relation for the 2nd design is:

Therefore,

 $l_I' = 67.0$ is the estimate of the effect of I

 $l_1' = -2.0$ is the estimate of the effect of 1-24+35+67

 $l_2' = -12.5$ is the estimate of the effect of 2-14+36+57

 $l_3' = -1.5$ is the estimate of the effect of 3+15+26-47

 $l_{12}' = -21.5$ is the estimate of the effect of 12-4+37+56

 $l_{13}' = -1.5$ is the estimate of the effect of 13+5+27-46

 $l_{23}' = -3.0$ is the estimate of the effect of 23+6+17-45 $l_{123}' = -2.0$ is the estimate of the effect of -34+25+16+7 $(l_1+l_1')/2 = 66.75$ est I $(l_1-l_1')=-0.5$ est Higher Order Terms $(l_1+l_1')/2 = 0.75$ est 1+35+67 $(l_1-l_1')/2 = 2.75$ est 24 $(l_2+l_2')/2 = -0.25$ est 2+36+57 $(l_2-l_2')/2 = 12.25$ est 24 $(l_3+l_3')/2 = -0.25$ est 3+15+26 $(l_3-l_3')/2 = 1.25$ est 47 $(l_{12}+l_{12}')/2 = 0.5$ est 12+37+56 $(l_{12}-l_{12}')/2 = 22.0$ est 4 $(l_{13}+l_{13}')/2 = -0.5$ est 13+5+27 $(l_{13}-l_{13}')/2 = 1.0$ est 23+6+17 $(l_{23}-l_{23}')/2 = 2.0$ est 45 $(l_{123}+l_{123}')/2 = 0.25$ est 25+16+7 $(l_{123}-l_{123}')/2 = 2.25$ est 25+16+7

It can be seen that all interactions and main effects of 4 are unconfounded.

If
$$\sigma_y = 3$$
, $\sigma_{eff} = \left(\frac{4\sigma^2}{N}\right)^{\frac{1}{2}} = \left(\frac{4 \cdot 3^2}{16}\right)^{\frac{1}{2}} = 1.5$. So, average (I), 14, and 4 are important and estimated to be 66.75, 12.25, and 22.0 respectively.

Model for response is:

$$\hat{y} = 66.75 + \frac{22.0}{2}x_4 + \frac{12.25}{2}x_1x_4$$

Summary:

 First we conducted the "principal fraction" from the family of generators

$$I = \pm 124 = \pm 135 = \pm 236 = \pm 1237$$
, i.e., we used the generators with all "+" signs:
 $4 = 12.5 = 13.6 = 23.7 = 123$

• Second we conducted another 2⁷⁻⁴ design with generators 4=-12,5=13,6=23,7=123. We noted that the recipe matrix for this 2nd design was identical to that of our first design except that column 4 was folded. We saw that the results of this fold-over design when combined with those of the 1st design unconfounded the effects of 4 and all of its 2-factor interactions.

Another type of follow-up design - to clear up confounding left by a 1st design is the Mirror Image Design which flips all signs in the recipe matrix

of the1st design.

Test	1	2	3	4	5	6	7
9	+	+	+	-	-	-	+
10	-	+	+	+	+	-	-
11	+	-	+	+	-	+	-
12	-	-	+	-	+	+	+
13	+	+	-	-	+	+	-
14	-	+	-	+	-	+	+
15	+	-	-	+	+	-	+
16	-	-	-	-	-	-	-

The mirror image design when combined with the 1st design will unconfound all the main effects. Let's examine the recipe matrix to see what the generators happen to be:

So defining relation is:

Therefore, assuming 3-factor interactions and higher are negligible,

1st Design	2nd Design: Mirror Image Design
l_I est I	l_I " est I
<i>l</i> ₁ est 1+24+35+67	<i>l</i> ₁ " est 1-24-35-67
$l_2 \text{ est } 2+14+36+57$	l ₂ " est 2-14-36-57
<i>l</i> ₃ est 3+15+26+47	l ₃ " est 3-15-26-47
<i>l</i> ₁₂ est 12+4+37+56	l ₁₂ " est 12-4+37+56
l_{13} est 13+5+27+46	l ₁₃ " est 13-5+27+46
l_{23} est 23+6+17+45	l ₂₃ " est 23-6+17+45
<i>l</i> ₁₂₃ est 34+25+16+7	<i>l</i> ₁₂₃ " est -34-25-16+7

By combining the two designs, we can obtain

$$\frac{1}{2}(l_{I}+l_{I}") \text{ est I} \qquad \qquad (l_{I}-l_{I}") \text{ est Higher Order Eff.}$$

$$\frac{1}{2}(l_{1}+l_{1}") \text{ est 1} \qquad \qquad \frac{1}{2}(l_{1}-l_{1}") \text{ est 24+35+67}$$

$$\frac{1}{2}(l_{2}+l_{2}") \text{ est 2} \qquad \qquad \frac{1}{2}(l_{1}-l_{1}") \text{ est +14+36+57}$$

$$\frac{1}{2}(l_{3}+l_{3}") \text{ est 3} \qquad \qquad \frac{1}{2}(l_{3}-l_{3}") \text{ est 15+26+47}$$

$$\frac{1}{2}(l_{12}+l_{12}") \text{ est 12+37+56} \qquad \qquad \frac{1}{2}(l_{12}-l_{12}") \text{ est 4}$$

$$\frac{1}{2}(l_{13}+l_{13}") \text{ est 13+27+46} \qquad \qquad \frac{1}{2}(l_{13}-l_{13}") \text{ est 5}$$

$$\frac{1}{2}(l_{23}+l_{23}") \text{ est 23+17+45} \qquad \qquad \frac{1}{2}(l_{23}-l_{23}") \text{ est 6}$$

$$\frac{1}{2}(l_{123}+l_{123}") \text{ est 7} \qquad \qquad \frac{1}{2}(l_{123}-l_{123}") \text{ est 34+25+16}$$