12.0 FRACTIONAL FACTORIAL DESIGNS

(Updated Spring,2001)

We now need to look at a class of designs that are good for studying many variables in a relatively limited number of tests, fractional factorial designs.

Previously we saw that if we carefully selected levels for variables we could obtain a Latin square, or Graeco-Latin square design, we didn't need to look at all combinations of the variable levels. Fractional Factorial Designs, 2^{k-p} designs, are analogous to these designs.

Let's say we're thinking about a 2³ full factorial design.

Test	I	1	2	3	12	13	23	123
1	+	-	-	-	+	+	+	-
2	+	+	-	-	-	-	+	+
3	+	-	+	-	-	+	-	+
4	+	+	+	-	+	-	-	-
5	+	-	-	+	+	-	-	+
6	+	+	-	+	-	+	-	-
7	+	-	+	+	-	-	+	-
8	+	+	+	+	+	+	+	+

We want to examine a 4th variable, but only have enough resources for 8 tests. We can introduce variable 4 thru interaction 123

Test	1	2	3	4
1	-	-	-	-
2	+	-	-	+

Test	1	2	3	4
3	-	+	-	+
4	+	+	-	-
5	-	-	+	+
6	+	-	+	-
7	-	+	+	-
8	+	+	+	+

Recipe Matrix: tells us how to run experiment

Test	I	1	2	3	4	12	13	14	23	24	34	123	124	134	234	1234
1	+	-	-	-	-	+	+	+	+	+	+	-	-	-	-	+
2	+	+	-	-	+	-	-	+	+	-	-	+	-	-	+	+
3	+	-	+	-	+	-	+	-	-	+	-	+	-	+	-	+
4	+	+	+	-	-	+	-	-	-	-	+	-	-	+	+	+
5	+	-	-	+	+	+	-	-	-	-	+	+	+	-	-	+
6	+	+	-	+	-	-	+	-	-	+	-	-	+	-	+	+
7	+	-	+	+	-	-	-	+	+	-	-	-	+	+	-	+
8	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+

We note that the following columns are the same:

I&1234	3 & 124	23 & 14
1 & 234	12 & 34	123 & 4
2 & 134	13 & 24	

We have deliberately confounded Variable 4 and Interaction 123, in doing so we have also confounded I & 1234, 1 & 234, 2 & 134, etc. We have conducted a 2^{4-1} fractional factorial design 4 variables are examined in $2^{4-1} = 8$ tests.

Some Basic Ideas/Definitions

For 8 tests = $2^3 \rightarrow$ Base design Calculation Matrix is:

I	1	2	3	12	13	23	123
+	-	-	-	+	+	+	-
+	+	-	-	-	+	+	+
+	-	+	-	-	+	-	+
+	+	+	+	+	-	-	-
+	-	-	+	+	-	-	+
+	+	-	+	-	+	-	-
+	-	+	+	-	-	+	-
+	+	+	+	+	+	+	+

We introduced variable 4 thru int. 123. Symbolically, 4 = 123

- Any column multiplied by itself produces a column of all "+" signs, I.
- 4 4 = I
- Any column multiplied by I gives the original column:

$$I \cdot 4 = 4$$

 $4 \cdot 4 \cdot 4 = 4$

Consider again how we introduced variable 4 into the design.

$$4 = 123$$

This is termed the generator for the design.

$$4 \cdot 4 = 1234$$
 and $I = 1234$

is the alternative form for the generator.

In this case, this is the defining relationship for our 2 ⁴⁻¹ design. It tells us the confounding/aliasing pattern for our design.

Question: Consider columns 123&4. How do we calculate E_{123} & E_{4} , in other words, estimates of μ_{123} & μ_{4} ?

Since we only have 8 tests, we only can calculate 8 unique quantities. We calculate these quantities using the 8 columns in the base design calculation matrix (I,1,2,3,12,13,23,123)

$$Tests$$

$$\sum_{i=1}^{\infty} Col_{12} \bullet y$$

$$\# = \frac{i=1}{4} = l_{12}$$

These calculated values will be referred to as: l_I , l_1 , l_2 , l_3 , l_{12} , l_{13} , l_{23} , l_{123}

We know what to calculate and how to do it, just like full factorials. How to interpret the results though?

We have observed that col. 123 = col. 4. When we calculate l_{123} , is this an estimate of μ_{123} or μ_4 or what? In fact, l_{123} estimates $\mu_{123} + \mu_4$. It is the effect of a linear combination of 123 & 4. In our problem,

 l_1 estimates $\mu_1 + \mu_{234}$ (shorthand notation for $\mu_1 + \mu_{234}$) l_2 estimates $\mu_2 + \mu_{134}$ l_3 estimates $\mu_3 + \mu_{124}$ l_{12} estimates $\mu_{12} + \mu_{34}$ l_{13} estimates $\mu_{13} + \mu_{24}$ l_{23} estimates $\mu_{23} + \mu_{14}$ l_{123} estimates $\mu_{123} + \mu_{44}$

and

 $l_{\rm I}$ estimates I+ $\mu_{1234}/2$

Another example: Study 6 variable in 8 tests 2^{6-3} design. $2^{k-p} =$

2 ^m tests

k = 6 variables to be studied

p = 3 variables to be introduced using interactions from base design

m = 3 number of variables in the base design

Base Design

Test	I	1	2	3	12	13	23	123
1	+	-	-	-	+	+	+	-
2	+	+	-	-	-	-	+	+
3	+	-	+	-	-	+	-	+
4	+	+	+	-	+	-	-	-
5	+	-	-	+	+	-	-	+
6	+	+	-	+	-	+	-	-
7	+	-	+	+	-	-	+	-
8	+	+	+	+	+	+	+	+

Introduce 4,5,6 using 3 of these interactions

Introduce variables 4,5, & 6 using interactions 12,13, & 23 Generators: 4 = 12, 5 = 13, 6 = 23 or I = 124, I = 135, I = 236

Recipe Matrix

Test	1	2	3	4	5	6
1	-	-	-	+	+	+
2	+	-	-	-	-	+
3	-	+	-	-	+	-
4	+	+	-	+	-	-
5	-	-	+	+	-	-
6	+	-	+	-	+	-
7	-	+	+	-	-	+
8	+	+	+	+	+	+

Defining Relationship

We have *p* generators

$$I = 124 = 135 = 236$$

Consider their products 2 at a time

Products 3 at a time

In general, all the way up to "products p at a time". So, Defining Relationship:

$$I = 124 = 135 = 236 = 2345 = 1346 = 1256 = 456$$

There are 2^p words = 8 in the defining relationship. "Word" = a string such as "236"

Design Resolution

"The length of the shortest word in the defining relation (excluding I) is termed the design resolution" For this example, Design Resolution = III.

What does Design Resolution mean?

- Des. Res. = III: Main effects are confounded with two factor interactions (1 with 2) and 3=1+2.
- Des. Res. = IV: Main effects are confounded with three factor interactions (1 with 3) and 4=1+3. It can also be two factor interactions are confounded with one another (2 with 2) and 4=2+2.
- Des. Res. = V: Main effects confounded with 4 factor c (1 + 4 = 5), or, two-factor interactions are confounded with three factor interactions (2 + 3 = 5)
- Des. Res. = II: Main effects confounded with one another. This would be very, very bad.

Linear Combinations of Effects

Consider the columns in the base design calc. matrix: I,1,2,3,12,13,23,123. Multiply each of the columns above by each word in the defining relation. l_I estimates

$$I + \frac{\mu_{124}}{2} + \frac{\mu_{135}}{2} + \frac{\mu_{236}}{2} + \frac{\mu_{2345}}{2} + \frac{\mu_{1346}}{2} + \frac{\mu_{1256}}{2} + \frac{\mu_{456}}{2}$$

$$l_1 \text{ est } 1 + 24 + 35 + 1236 + 12345 + 346 + 256 + 1456$$

$$l_2 \text{ est } 2 + 14 + 1235 + 36 + 345 + 12346 + 156 + 2456$$

$$l_3 \text{ est } 3 + 1234 + 15 + 26 + 245 + 146 + 12356 + 3456$$

$$l_{12} \text{ est } 12 + 4 + 235 + 136 + 1345 + 2346 + 56 + 12456$$

$$l_{13} \text{ est } 13 + 234 + 5 + 126 + 1245 + 46 + 2356 + 13456$$

$$l_{23} \text{ est } 23 + 134 + 125 + 6 + 45 + 1246 + 1356 + 23456$$

$$l_{123} \text{ est } 123 + 34 + 25 + 16 + 145 + 246 + 356 + 123456$$

Note that each linear combination has 8 terms, the same as the number of words in the defining relation.

For 6 variables, 1 average 6 main effects 15 2-factor interactions 20 3-factor interactions 15 4-factor interactions 6 5-factor interactions 1 6-factor interaction

Total 64 effects

Conduct the 8 tests, In std. order (24.5, 16.0, 16.0, 23.0, 25.0, 13.5, 17.0,24.0). Under the assumption that 3 - factor and higher order interactions are negligible,

 l_{I} = 20 estimates I l_{I} = -1.25 estimates μ_{1} + μ_{24} + μ_{35} l_{2} = 0.50 estimates μ_{2} + μ_{14} + μ_{36} l_{3} = 0.25 estimates μ_{3} + μ_{15} + μ_{26} l_{12} = 8.75 estimates μ_{12} + μ_{4} + μ_{56} l_{13} = -0.5 estimates μ_{13} + μ_{5} + μ_{46} l_{23} = 1.25 estimates μ_{23} + μ_{6} + μ_{45} l_{123} = 1.0 estimates μ_{34} + μ_{25} + μ_{16}

Note that main effects are confounded with 2-factor interactions, and the design resolution is III.

Normal plot shows l_{12} important. Other μ 's, may also be important but cancel one another out. If the sum " $\mu_{12} + \mu_4 + \mu_{56}$ "is important, it could be due to μ_{12} and/or μ_4 and/or

μ_{56}

Given no other experiment results, we must apply process knowledge to figure out what is important.

Fractional Fact Designs: Good for screening experiments. Find out important variables from a large list

- Want to develop/create a 2^{k-p} FFD. k-p=m
- Write out calculation matrix for 2^m full factorial design base design
- Introduce the p new variables thru the interaction columns in the base design calculation matrix p generators
- Write out the recipe matrix for the 2^{k-p} design
- Use the generators to develop defining relationship.
 - # of words = 2^p
- design resolution =length of shortest word in the defining relation.
- Write out the linear combination of effects that may be estimated one linear combination for each col in the base design calculation matrix.
- Run expt. using recipe matrix
- Calculate l_I , l_1 , l_2 ,... by multiplying each column in the base design calculation matrix by the column of responses and divide by the appropriate # of "+" signs.

More nomenclature:

$$2^7$$
 full factorial = 128 tests

$$2^{7-1}$$
 frac. fact = 64 tests = 1/2 fraction

$$2^{7-2}$$
 frac. fact = 32 tests = 1/4 fraction

$$2^{7-3}$$
 frac. fact = 16 tests = 1/8 fraction

$$2^{7-4}$$
 frac. fact = 8 tests = $1/16$ fraction

2⁴ Full Factorial in Std. Order

Test	1	2	3	4
1	-	-	-	-
2	+	-	-	-
3	-	+	-	-
4	+	+	-	-
5	-	-	+	-
6	+	-	+	-
7	-	+	+	-
8	+	+	+	-
9	-	-	-	+
10	+	-	-	+
11	-	+	-	+
12	+	+	-	+
13	-	-	+	+
14	+	-	+	+
15	-	+	+	+
16	+	+	+	+

2⁴⁻¹ design with 4=123

Test	1	2	3	4= 123
1	-	-	-	-
10	+	-	-	+
11	-	+	-	+
4	+	+	-	-
13	-	-	+	+
6	+	-	+	-
7	-	+	+	-
16	+	+	+	+

What about the remaining 8 tests?

Test	1	2	3	4	123
2	+	-	-	-	+
3	-	+	-	-	+
5	-	-	+	-	+
8	+	+	+	-	+
9	-	-	-	+	-
12	+	+	-	+	-
14	+	-	+	+	-
15	-	+	+	+	-

The generator for this 2^{4-1} design is 4 = -123. Thus, variable 4 is introduced by negating/switching/folding the signs on the 123 interaction column.

For 2^{4-1} design we can introduce variable 4 using 123 or -123. The generator is a member of $4 = \pm 123$ family of generators.

We might consider using the family of generators $4 = \pm 12$, but this is only of resolution III, while $4 = \pm 123$ is of resolution IV. We "Always" want designs with highest resolution.

Let's examine the linear combinations that are obtained from the defining relationships of our two 2^{4-1} designs with $4=\pm 123$

$$I = 1234$$

$$I_{I} \operatorname{est} I + \frac{\mu_{1234}}{2}$$

$$I'_{I} \operatorname{est} I - \frac{\mu_{1234}}{2}$$

$$I'_{1} \operatorname{est} I - 234$$

$$I'_{1} \operatorname{est} 1 - 234$$

$$I'_{2} \operatorname{est} 2 + 134$$

$$I'_{2} \operatorname{est} 2 - 134$$

l_3 est 3 +124	1' ₃ est 3 - 124
l_{12} est $12 + 34$	1' ₁₂ est 12 -34
l_{13} est 13 +24	1' ₁₃ est 13 -24
l_{23} est 23 + 14	1' ₂₃ est 23 - 14
l_{123} est $123 + 4$	1' ₁₂₃ est 123 - 4

The results from the 2 FFD's may be combined to resolve effect confounding

$(l_I + l'_I)/2$ est I	$(l_{\rm I} - l'_{\rm I})$ est 1234
$(l_1 + l'_1)/2$ est 1	$(l_1 - l'_1)/2$ est 234
$(l_2 + l'_2)/2$ est 2	$(l_2 - l'_2)/2$ est 134
$(l_3 + l'_3)/2$ est 3	$(l_3 - l_3)/2$ est 124
$(l_{12} + l'_{12})/2$ est 12	$(l_{12} - l'_{12})/2$ est 34
$(l_{13} + l'_{13})/2$ est 13	$(l_{13} - l'_{13})/2$ est 24
$(l_{23} + l'_{23})/2$ est 23	$(l_{23} - l'_{23})/2$ est 14
$(l_{123} + l'_{123})/2$ est 123	$(l_{123} - l'_{123})/2$ est 4

Thus, if we were to run a 2^{4-1} FFD (4=123) followed up by a 2^{4-1} FFD (4=-123), we may calculate/recover all the information associated with a 2^4 full factorial