Lecture #7

Luis R. Garcilaso

January 25, 2006

Motion Study, Time Study, Social Impact

∨ We've described motion study in order to be able to analyze tasks in detail, in that way we could improve/optimize our manufacturing or service processes. What could be a social impact of optimizing our processes?

Motion Study, Time Study, Social Impact

- Let's say we do a motion study and a time study (to be described today), what could happen if we discover that the STD time for doing a task is 12.5 sec, and the operators are doing it in 15 sec?
- What if we eliminate motions/steps?
 Will the task be completed in less time?

Motion Study, Time Study, Social Impact

- ∨ Less Labor needed....
- ∨ Improve labor...
- ∨ Motivate workers...
- v Ethics...

Work Measurement

- Estimate standard time required to perform a task
- ∨ Methods of performing work measurement
 - q Stopwatch time study
 - **q** Elemental standard time files
 - **Predetermined motion times**
 - **q** Work sampling

- Time Study measures how long it takes an <u>average</u> worker to complete a task at a <u>normal</u> pace
- The actual time taken by the above-avg. operation must be increased, and the time taken by the below-avg. must be reduced to the value representative of normal performance.

- Performance rating is a technique for equitably determining the time required to perform a task by the normal operator after the observed values of the operation under study have been recorded.
- A "normal" operator is defined as a qualified, thoroughly experienced operator who is working under conditions as they customarily prevail at the work station, at a pace that is neither fast nor slow, but representative of average.

Allowance Factor: Addition of an allowance to take care of the many interruptions, delays, and slowdowns brought on by fatigue which enter into every work assignment (e.g. car trip)

- ✓ Frederick W. Taylor
 -1881, he started to develop time study
- Started at a machine shop at home with his family
- ∨ Tools
 - **q** Stopwatch & Clipboard
- √ Tools Used Today:
 - **q** Computers
 - **a** Bar codes
 - **q** Accustudy Software

Stopwatch Time Study Basic Steps

- 1. Establish the standard job method
- 2. Break down the job into elements
- 3. Study the job
- 4. Rate the worker's performance (RF)
- 5. Compute the average time (t)

Stopwatch Time Study Basic Steps

6. Compute the normal time

7. Compute the standard time

Standard Time = (normal cycle time)(1+allowance factor)
$$ST = (NT) (1 + AF)$$

Time Study Observation Sheet																		
Identification of operation Sandwich Assembly Date																		
Opera Smi				· ·								Observer Russell						
							Cycles						Summary					
			1	2	3	4	5	6	7	8	9	10	$\sum t$		RF	Nt		
1	Grasp and layout bread slices	t	.04	.05	.05	.04	.06	.05	.06	.06	.07	.05	.53	.053	1.05	.056		
		R	.04	.38	.72	1.05	1.40	1.76	2.13	2.50	2.89	3.29						
•	Spread mayonnaise on both slices	t	.07	.06	.07	.08	.07	.07	.08	.10	.09	.08	.77	.077	1.00	.077		
2		R	.11	.44	.79	1.13	1.47	1.83	2.21	2.60	2.98	3.37						
3	Place ham, cheese, and lettuce on bread	t	.12	.11	.14	.12	.13	.13	.13	.12	.14	.14	1.28	1.28	1.10	.141		
		R	.23	.55	.93	1.25	1.60	1.96	2.34	2.72	3.12	3.51						
4	Place top on sandwich, slice and stack	t	.10	.12	.08	.09	.11	.11	.10	.10	.12	.10	1.03	1.03	1.10	.113		
		R	.33	.67	1.01	1.34	1.71	2.07	2.44	2.82	3.24	3.61						

Stopwatch Time Study Basic Steps

∨ Compute average element time

$$\bar{t} = \frac{\sum t}{n} = \frac{0.53}{10} = 0.053$$

√ Normal time = (Elemental average) (rating factor)

$$_{V}$$
 Nt = (t)(RF) = (0.053)(1.05) = 0.056

∨ Normal Cycle Time = NT = Nt = 0.387

Time Study Example

$$ST = (NT) (1 + AF) = (0.387)(1+0.15) = 0.445 min$$

How many sandwiches can be made in 2 hours?

$$\frac{120 \, \text{min}}{0.445 \, \text{min/sandwich}} = 269.7 \, \text{or} \, 270 \, \text{sandwiches}$$

Time Study Exercise

- Motion studies and Time studies are performed not only in manufacturing processes but also to Services processes (e.g. McDonald's, Bank's tellers, etc.).
- We will perform 6 tasks while time is taken out of each repetition
- The level of detail on each task description is low for simplification purposes.
- Objective Get std times in order to measure performance, do capacity analysis
- Performed at early stages of design

Time Study Exercise

- Student 1: worker
- Student 2: collecting times
- Student 3: data recorder

Time Study Exercise

Time Study Observation Sheet																
											Date					
Operator Approval											Observer					
Cycles												Summary				
			1	2	3	4	5	6	7	8	9	10	t	t avg	RF	Nt
1	Search and grab 4 quarters wrappers and put them	t														
	into an envelope, close it	R														
2	Search and grab 5 dimes wrappers and put them	t														
	into a different envelope, close it	R														
3	Search and grab 2 nickels wrappers and put them	t														
	into a third envelope, close it	R														
4	Grab the three envelopes and take them to the table	t														
	where the balloons are, put them on the table	R														
Grab a ballo	Grab a balloon and blow it up until it reaches a	t														
	measurement of 8 inches from edge to edge	R														
6	Tie a knot in the balloon															
	aaio salioon	R														

Assumptions

Rating factors:

• Task 1-4: 5%

• Task 5-6: 10%

Allowance factor: 15%

