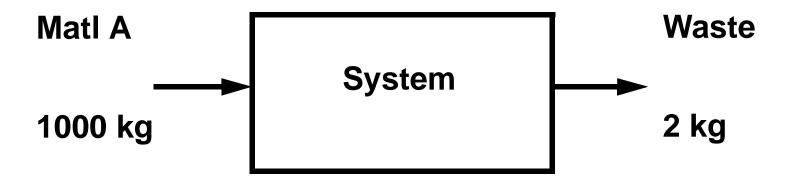
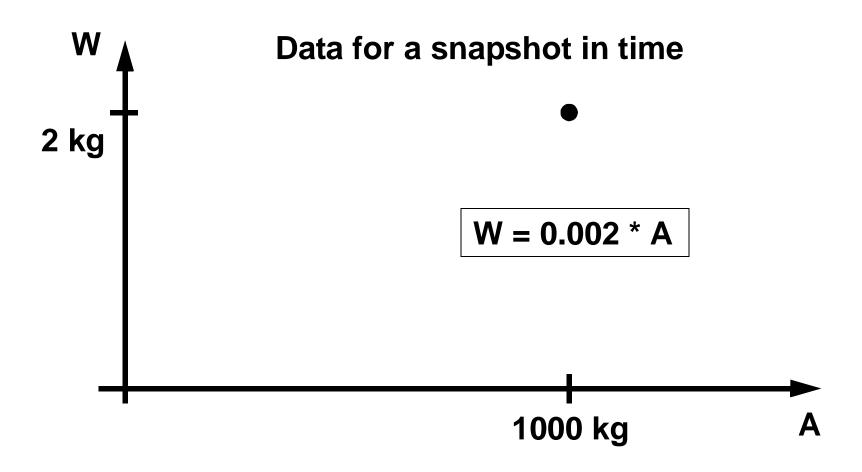
Lecture #42

ERDM

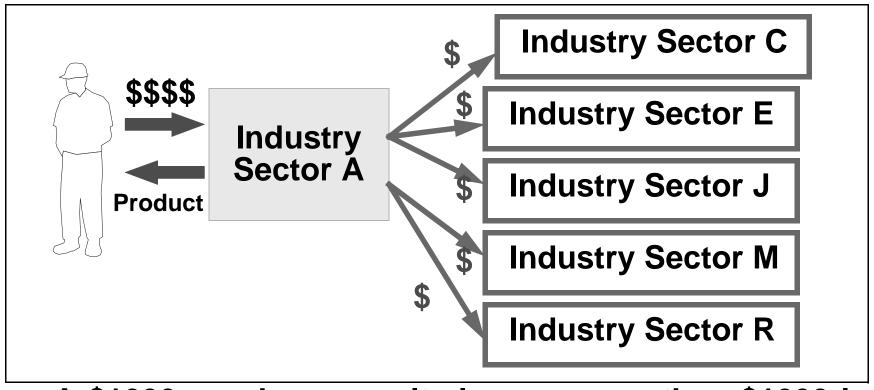

Prof. John W. Sutherland

April 23, 2004


EIO-LCA

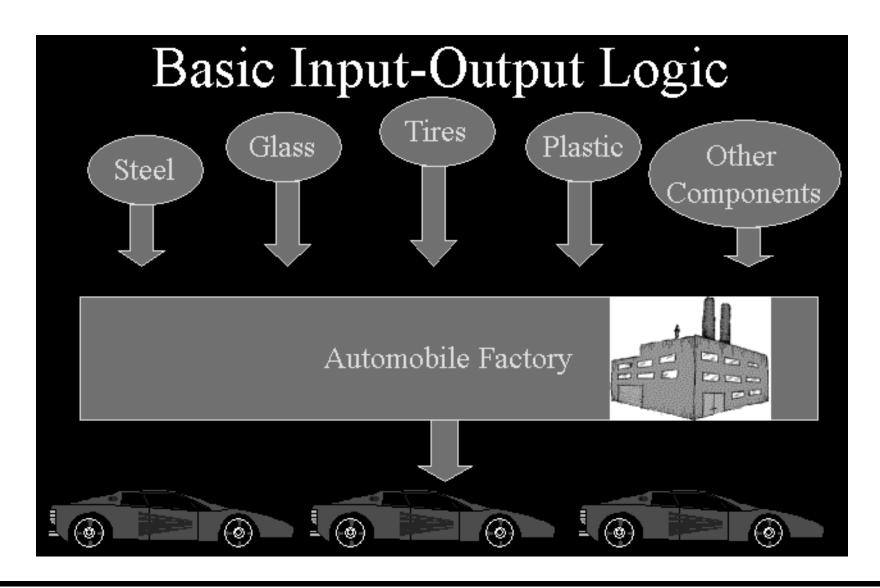
- EIO-LCA (Economic Input/Output Life Cycle Assessment)
- Input / Output Analysis??

Simple Input - Output Analysis



What are I-O models?

- Used to capture inter-industry/system transactions.
- Industries use the products of other industries to produce their own products
 e.g. - Automobile manufacturers rely on products from chemical, metal, electronics, tire, etc. industries
- Outputs from one industry become inputs to another industry
- When you buy a car, the demand for steel, glass, plastic, etc. is affected.

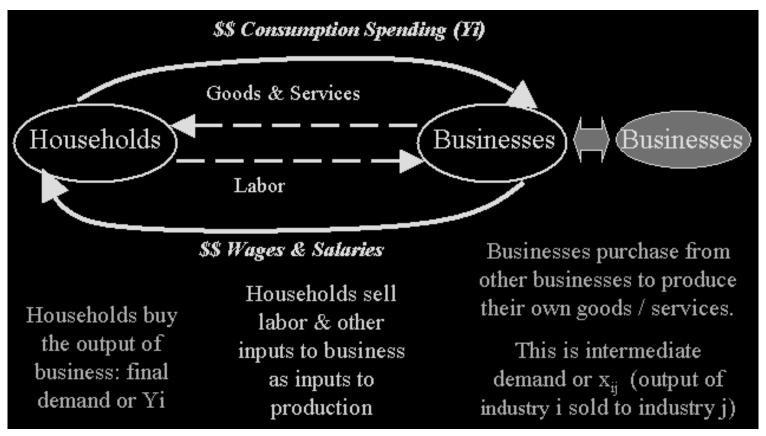


More on EIO Basic Idea

A \$1000 purchase results in way more than \$1000 in total activity. Where to invest to get best total impact?

Assumptions

- The economy/system is divided into n sectors [sectors - individuals, companies, nations,etc.]
- Each sector produces exactly one output
- One non-product Labor
- Constant returns to scale [To increase output by 'A', scale input by 'A']
- No choice of production techniques [No substitution possible between inputs]


Temporal Distinctions of I-O models

- Static Snap-shot of a system in motion. Represents phenomena at a single interval of time
- Comparative Static Succession of snap-shots.
 Compares phenomena at several instances of time
- Dynamic relation of a frame to the succeeding frame. Shows how phenomena within an interval are related to activities outside the interval
- Comparative Dynamic comparison of two segments of motion picture

Economic I-O Analysis

Method to systematically quantify the interrelationships among various sectors of an economic system.

Model Formulation

X_i: Entire output of industry sector i -- in \$\$\$\$

$$X_i = Z_{i1} + Z_{i2} + Z_{i3} + \dots + Y_i$$

$$X_i = \Sigma Z_{ij} + Y_i$$

Z_{ii}: Output of industry sector i sold to industry sector j

Y_i: Final demand for sector i's products (other than inter-industry exchanges) -- Govt., export, etc.

Inter-industry Demand

$$Z_{ij} = a_{ij} \cdot X_j$$

Z_{ij}: Output of sector i sold to sector j

X_i: Output of sector j

 a_{ij} : Input-output coefficient (0 < a_{ij} < 1)

$$X_i = a_{i1} \cdot X_1 + a_{i2} \cdot X_2 + a_{i3} \cdot X_3 + \dots + Y_i$$

$$X_i = \sum a_{ij} \cdot X_j + Y_i$$
 or $X_i - \sum a_{ij} \cdot X_j = Y_i$

Matrix Form

In matrix form the complete n x n system is:

(I - A)X = Y, where, A - matrix of input output coefficients

If | I - A | is not equal to zero, (I - A)⁻¹ can be determined.

Therefore, $X = (I - A)^{-1} Y$

Here (I - A)⁻¹ is known as the LEONTIEF INVERSE.

Example

Consider two hypothetical sectors

		To Processing Sectors		Final Demand	Total Output
		1	2	(Y _i)	(X _i)
From Processing Sectors	1	150	500	350	1000
	2	200	100	1700	2000
Payments (value added)		650	1400		
Total Outlays	(X _i)	1000	2000		

Since $X = (I-A)^{-1}Y$, we can describe how sector outputs, X's, will change when Y changes.

Example (cont.)

Input output coefficients:

$$a_{11} = 150/1000 = 0.15$$

$$a_{12} = 500/2000 = 0.25$$

Therefore,
$$A = \begin{bmatrix} 0.15 & 0.25 \\ 0.20 & 0.05 \end{bmatrix}$$
 & $Y = \begin{bmatrix} 350 \\ 1700 \end{bmatrix}$, $X = \begin{bmatrix} 1000 \\ 2000 \end{bmatrix}$

Analyze how sector 1 & 2 outputs are affected if final demand for sector 1 is increased from \$350 to \$400 and that of sector 2 is reduced from \$1700 to \$1600.

Example (cont.)

From problem statement,
$$Y = \begin{bmatrix} 400 \\ 1600 \end{bmatrix} \sim Y = \begin{bmatrix} 50 \\ -100 \end{bmatrix}$$

Also,
$$(I - A) = \begin{bmatrix} 0.85 & -0.25 \\ -0.20 & 0.95 \end{bmatrix}$$
 and $(I - A)^{-1} = \begin{bmatrix} 1.254 & 0.33 \\ 0.264 & 1.122 \end{bmatrix}$

$$dX = (I - A)^{-1} \cdot dY = \begin{bmatrix} 1.254 & 0.33 \\ 0.264 & 1.122 \end{bmatrix} \cdot \begin{bmatrix} 50 \\ -100 \end{bmatrix} = \begin{bmatrix} 29.7 \\ -99 \end{bmatrix}$$

The change in demand produces an increase in sector 1 output of \$29.7 and a decrease in sector 2 output of \$99.0.

EIO-LCA

(http://www.eiolca.net/)

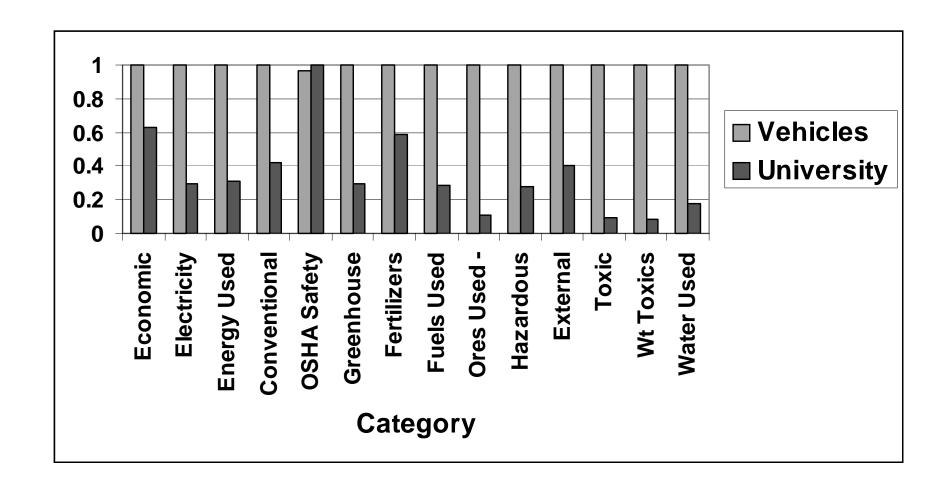
- The model divides the U.S. economy into roughly 500 sectors.
- The model can be visualized as a large table (or matrix) with 500 rows and 500 columns, with one row and one column for each sector
- Economic matrix is augmented with environmental impact indices, used to analyze economy-wide environmental impacts of changes in the output of selected industrial sectors.

EIO-LCA

- The environmental effects estimated include:
 - Electricity consumption,
 - Fuel use, Ore consumption,
 - Fertilizer use, Water consumption
- Environmental outputs:
 - Toxic emissions from the Toxics Release Inventory (TRI),
 - Toxicity-weighted chemical emissions (CMU-ET),
 - RCRA hazardous waste generation/management,
 - Ozone depletion & Global warming potentials,
 - Conventional pollutant emissions

Example of an eiolca.net Application

\$1,000,000 spent to purchase vehicles.


Effects	Total all sectors
Economic Purchases [\$ million]	2.805601
Electricity Used [MkW-hr]	0.619805
Energy Used [TJ]	14.247421
Conventional Pollutants Released [metric tons]	12.123697
OSHA Safety [fatalities]	0.000611
Greenhouse Gases Released [metric tons CO2 equiv.]	1015.733333
Fertilizers Used [\$ million]	0.000313
Fuels Used [metric tons]	387.640473
Ores Used - at least [metric tons]	326.117099
Hazardous Waste Generated [RCRA, metric tons]	47.438562
External Costs Incurred [median, \$ million]	0.027846
Toxic Releases and Transfers [metric tons]	2.023702
Weighted Toxic Releases and Transfers [metric tons]	11.583339
Water Used [billion gallons]	0.006308

\$1,000,000 to a University

Effects	Total all sectors
Economic Purchases [\$ million]	1.765978
Electricity Used [MkW-hr]	0.182479
Energy Used [TJ]	4.376041
Conventional Pollutants Released [metric tons]	5.138401
OSHA Safety [fatalities]	0.000634
Greenhouse Gases Released [metric tons CO2 equiv.]	298.175632
Fertilizers Used [\$ million]	0.000184
Fuels Used [metric tons]	110.132634
Ores Used - at least [metric tons]	34.658559
Hazardous Waste Generated [RCRA, metric tons]	13.064121
External Costs Incurred [median, \$ million]	0.011248
Toxic Releases and Transfers [metric tons]	0.193479
Weighted Toxic Releases and Transfers [metric tons]	1.017710
Water Used [billion gallons]	0.001088

