Lecture #18

ERDM

Prof. John W. Sutherland

Feb. 20, 2004

Disassembly Sequence ("and or" diagram)

Disassembly Sequence (network model)

Separate subassemblies in []

Disassembly Analysis

- The network model describes the disassembly process flow
- Disassembly steps (e.g., remove part A) are characterized by arcs in the figure.
- Disassembly configurations (e.g., C is separate from parts A+B+D) appear as nodes in the figure.
- Industrial Engineering (Operations Research) techniques can be used to analyze the system.

Selecting a Disassembly Sequence

- Let's say we take the product apart a few times and we try to explore each of the pathways in the network model (sometimes referred to as a directed graph)
- We can establish a time for each disassembly operation (or perhaps even time distributions).
- Alternatively, there are handbooks that list the times required to perform certain operations.
- We could select the pathway that produces the minimum time.

Minimum Completion Time

Minimum Time Problem

- The minimum time problem we have just solved is also referred to as the "shortest path problem".
 Floyd's algorithm -- Dijkstra's algorithm
- For each node, we consider all ways to arrive at that node, and we select the way that is the minimum.
- By-product: Best way to get to every configuration.
- In principle, we could use this approach to figure out the best way to completely disassemble the entire product.

Partial Disassembly

- Is complete disassembly the best way to go?
- Maybe, if the product is designed correctly, we can quickly extract the parts that are
 - Undamaged
 - Of high value
 - Hazardous
- Then, recycle the material that remains in the product.
- What impact does partial disassembly have on our network model??

Modeling Partial Disassembly

- Associated with each disassembly activity is a cost.
 This cost includes the time to complete the task as well as other activity-related costs.
 (Costs are negative)
- At some nodes in our network model, we free up an individual part. When this happens, it is expected that revenue will be generated. (Revenue is positive)
- The challenge is then to figure out in which order to remove parts, and when (and if) to stop.

Maximum Profit Partial Disassembly

Disassembly Paths

Number of possible disassembly paths grows quickly!!

Let's use our network model instead.

Maximum Profit

Partial Disassembly

What if the product has been used and has undergone damage/wear? We may need to select disassembly path based on an initial inspection.

Recap

We've examined the influence of product design characteristics on environmental performance:

- Concept design
- Material selection
- Geometric features
- Part dimensions
- Assembly/Disassembly

Now, given this background, what must a designer do to reduce environmental impact?

Concept Design

We talked about using QFD to incorporate the "voice of the environment" in the design process.

- Most importantly -- while maximum degrees of freedom remain, CONSIDER ENVIRONMENTAL CONSEQUENCES!!
- Think "out of the box" -- how can customer needs be met from a minimum energy, minimum resource, minimum waste standpoint?
- Ideas: analogies in nature, brainstorming, etc.

Concept Design (cont.)

- What is the plan for the product at the end of its life??
 - Recycling?
 - Remanufacturing?
 - Reuse?
 - No plan? or Disposal?
- Product stewardship
 - Selling use versus selling a product
 - Lease programs
 - Increased software content (less hardware)
 - Reverse logistics (recovery infrastructure) in place?

Material Selection

Desirable characteristics of materials:

- Abundant, nontoxic, nonregulated materials
- Avoid complex materials, coatings, surface treatments
- Natural materials over synthetic materials
- Minimize the use of different materials
- Try to use recycled materials when possible

Material Abundance

Infinite	Ar, Br, Ca, Cl, Kr, Mg, N, Na,
supply	O, Rn, Si, Xe
Ample	Al(Ga), C, Fe, H, K, S, Ti
supply	
Adequate	I, Li, P, Rb, Sr
supply	
Potentially	Co, Cr, Mo(Rh), Ni, Pb (As,Bi),
limited supply	Pt (Ir, Os, Pd, Rh, Ru), Zr (Hf)
Potentially	Ag, Au, Cu (Se, Te), He, Hg, Sn,
highly limited	Zn (Cd, Ge, In, TI)
supply	

Materials -- Energy Requirements

Energy Input (GJ/Mg)

Metal	Primary Production	Secondary Production	
Steel	31	9	
Copper	91	13	
Aluminum	270	17	
Zinc	61	24	
Lead	39	0	
Titanium	430	140	

Energy advantage of recycled materials

Materials -- Solid Waste

Metal	Ore	Avg. Grade	Residues
	(Tg)	(%)	(Tg)
Copper	910	0.91	900
Iron	820	40.0	490
Lead	120	2.5	117
Aluminum	100	23.0	77
Nickel	35	2.5	34
Others	925	8.1	850
Total	2910		2460

Destruction of local habitats

Geometric Features

Remember discussion of reprocessability index

- Complexity makes reuse / remanufacturing more difficult. But assembly and disassembly may be simplified.
- Large part size promotes recycling, but uses more resources.
- Reduce stresses (avoid thin sections & stress risers)
 enhance product life -- maintain product value.
- Mating/contact surfaces -- discourage reuse and remanufacturing -- replaceable inserts an option.
- Removable features favored.

Part Dimensions

Remember discussion of Product Value Model

- Adopt the long term view -- want to think about the WHOLE USAGE STAGE.
- Maximize product life and consumer satisfaction over the life of the product. Want maximum value.
- Remember product performance degrades over time.
- Product-to-product variability increases over time.

Product Configuration

- How are the components within a product related to one another? Assembly/Disassembly
- We want to promote disassembly.
 - Tall hierarchy -- Modular Product Design
 - Flat hierarchy -- may favor replacement of individual components
 - Controlled or Destructive Disassembly
 - Single direction for insertion/removal

Remember discussion of liaison diagrams and network model for selecting disassembly order

