Lecture #16

ERDM

Prof. John W. Sutherland

Feb. 16, 2004

Product Design

So far.....

- The impact of material selection on the environment material related issues
- Specifications
- Use of QFD to hear "voice of the environment" during concept design.
- Effect of geometric features on reprocessability.
- Selection of product dimensions based on value model. Multiple use cycles.

Coming Soon

- Assembly & disassembly
- Fasteners
- Improving things....
 What actions can we take?
 - Design for recycling
 - Design for the environment
 - etc.
- Then...
 - Process issues
 - System issues

Some Loose Ends

Flow Chart

But, unit must process: $100/(1-\beta)$

If β =.25, unit must process 133

Sankey Diagram

Sankey diagrams are used for displaying flows through a system. They are especially useful for displaying mass, energy, and cash flows.

Shifting Gears

We now are going to begin looking at products with more than one part.

Examples: vehicle, washing machine, mechanical pencil, computer, etc.

Products consist of components, parts, sub-assemblies

What are the issues?

Principles (from Graedel & Allenby)

- All material that enters a manf. process should leave as part of a product.
- All energy should result in useful work.
- Products should be made of abundant, nontoxic materials.
- Products should be designed so that useful products can be made from them at the end of their life.
- Pursue min. packaging & max. matl. recycling/reuse.

Trends (Graedel & Allenby)

- Environmental constraints -- energy and resource conservation. Opportunity for competitive advantage.
- Price structures undergo evolution more externalities become captured through market mechanisms, fees, & taxes. Corp. that fail to internalize env. considerations - costs escalate wildly/ unpredictably - few options under rapid changes.
- Governments will place responsibility for products on manufacturers - product stewardship. 1990's product take-back legislation in Germany & Japan.

Take-Back

- Government policies are in effect (in some locations) that require take-back. Company is "on its own" to figure out what to do with the returned products.
- Some companies have products that naturally fit with the take-back concept.
 - "Single-use" cameras
 - Toner Cartridge
- Take-back concept is consistent with leasing/selling use concept (computers, locomotive engine, cable box, automobiles)

Evolving View of Take-back

Take-Back

It is likely that "take-back" will involve some form of disassembly.

- Reversible disassembly
- Irreversible (destructive) disassembly

- Critical operations
- Hazardous components / materials
- Separation and part control

Disassembly - Recycling

- Obviously, some disassembly is required if the intention is to rework, refurbish, remanufacture, etc. a product.
- If an "end-of-life" product is to be recycled, i.e., material recovery, it may also require disassembly.
 Why?

May be easier/less costly to recover materials in component form rather than in small shredded bits.

Disassembly Researchers

- J. Nevins & D. Whitney
- G. Boothroyd & P. Dewhurst
- Surendra Gupta
- Bert Bras
- Rajit Gadh
- Ad de Ron
- Xirouchakis
- Navin Chandra
- R. Caudill

Disassembly Operations

- Collection, transportation, & handling
- Storage of products / components (pre- and postdisassembly)
- Positioning & fixturing
- Separation of fasteners / joints
- Fixturing

Remove hazardous materials & components as early as possible.

Separation & Part Control

- Design parts for quick identification product labeling
- Provide for gripping surfaces / stacking surfaces
- Simplify fasteners promote easy separation minimum parts and minimum tools
- Modular designs preferred
- Quick removal (& replacement) of parts that are likely to have failed or seen excessive wear.

Disassembly

Discussing role of geometry, fasteners, and materials on the environment. Disassembly focuses on the relationship between the parts within a product.

