Lecture #13

ERDM

Prof. John W. Sutherland

Feb. 9, 2004

The Product Design Process

- Concept Design System Design
- Module definition Assemblies
- Detailed Product Design Material Type & Features
- Detailed Product Design Dimensions & Tolerances
- Prototyping and Testing

So far....

- Want to understand how the characteristics of a product design impact the environment
 - Material selection issues
 Mining & Metals processing, Plastics
 - Concept design
 QFD proposed as one way to "hear the voices":
 customer and environment

Next: How does product design geometry influence recycling?

Product Life Cycle

Reuse?

What promotes it?

What discourages it?

Remanufacturing?

What promotes it?

What discourages it?

Recycling?

What promotes it?

What discourages it?

Geometric Features

Focus on a single part (element of a larger product)

- Holes
- Slots
- Threads
- Contours

In general, the size and shape of a product. How do these features influence the three R's??

Role of Geometric Features

- Large parts vs. small parts
- Large surface area vs. small
- Complex vs. simple
- Presence of mating / sliding surfaces
- Sections / features that experience high stress

Product Features

Opitz Classification Code

MDSI Code (Manf. Data Sys., Inc.)

D-Class Code

Post-use Alternatives

Washing Machine

RPI - Reprocessability Index System (Wentland)

Focus on Rotational Parts

Product	Number of Parts	Rotational Parts %
Washing Mach.	254	61%
Cordless Drill	53	60%
Automotive Jack	122	80%
Electric Drill	79	68%
Utility Engine	188	68%

RPI Philosophy

Define metrics that, when small, are more likely result in product post-use. Metrics for the following

- Part complexity (more complex is bad)
- Part size (smaller parts are bad)
- Removable features (preferred)
- Relative stress level (low stress -- less damage?)
- Amount of mating (moving) contact areas (minimize)

Definition of RPI Terms

$$R_1 = \frac{\text{Volume of Bounding Volume}}{\text{Part Volume}} = \frac{V_{BV}}{V}$$

RPI Terms - 2

$$R_2 = \frac{\text{Surface Area}}{\text{Surface Area of Bounding Volume}} = \frac{SA}{SA_{BV}}$$

RPI Terms - 3

4 other terms to consider other factors

$$RPI = \sum R_i$$

Want to minimize RPI

RPI calculation linked to AutoCAD

D-Class Parts

Washing Machine Parts

Washing Machine Parts - 2

Another Example

