Lecture #11

ERDM

Prof. John W. Sutherland

Feb. 4, 2004

Assignment

Course text
WTEC EBM Report

Graduate Credit:

A Product

Why create a given product?

- An explicit customer demand or need
- Manufacturer anticipates a need not yet recognized by the customer

The problem: design product and associated processes to meet the customer need.

How to incorporate environmental thinking into the design process??

The Design Team

- 50 years ago: Engineers design the product and then ask manufacturing to make it. Loads of manufacturing problems.
- 15 years ago: DFM. Product designers are asked to produce a "print" that is easy to manufacture. Lack of manufacturing knowledge. Too much burden on product designers.
- Current thinking: Concurrent design/engineering. A design team is charged with simultaneously developing product <u>and</u> process designs.

Who is on the Design Team?

Concurrent Design

- Design the product and its processes concurrently using a concurrent design team
- Everyone has a say in everything
- Level of activity may be likened to that of the floor of the mercantile exchange -- very hectic -communication!!!
- Not always possible as a team but necessary in information gathering

The Traditional Product Development Life Cycle

Need

Specifications

Concept

Analysis

Prototype

Test

Evaluation

Processes

Manufacture

Delivery

Another View

some material from: Dr. Gershenson (MEEM @ MTU)

Customer Needs

- They speak a different language than product designers (red lion fresh fish example)
- Imprecise (the car makes a funny noise)
- May state in terms of product ("your meatloaf is not as good as the one Mom makes").
- May limit development unintentionally ("why would I need cable TV when there are 3 perfectly good TV stations broadcasting in town?")
- Guidance to designers is not very direct

Specification

Objective: To state what the product must do rather than how the product must do it

Add metric precision

The specification contains a metric and a value to be achieved or exceeded

Could be in the form of a demand, target, or wish:

- Vehicle weight must be less than 2000 lbs
- The vehicle should weigh less than 2000 lbs

How Can We Insure that the Specifications Respond to Customer Needs?

We need to hear the "Voice of the Customer"

How?

- Interviews
- Focus groups
- Observation of product in use

Voice of the Customer?

- Ensures product is focused on customer needs
- Identify latent or hidden needs
- Provide fact base for justifying specifications
- Archival record of needs in development
- Ensure no critical customer needs missed or ignored
- Develop common understanding of customer needs among development team

Quality Function Deployment

- This is a method to map the "voice of the customer" throughout product (and process) development.
- Ensures(?) that the needs of the customer are reflected in the product.
- Philosophy: products are customer driven.
- Tool: House of Quality

What the heck does this have to do with the Environment?

- We wish to use the QFD method to make sure that the wants/desires/needs of the customer are mapped into the product (and process).
- There is no reason why the QFD method cannot be employed to reflect wants from other important stakeholders!

The Environment!

Environmental Wants for QFD Should Reflect:

- Efficient use of material resources
- Energy resources
- Reduction of by-products, wastes, and side effects
- End of Life considerations

We are working with simple version of QFD

An Example:

Customer statement: "In the middle of the night, I sometimes wake-up and need a light to allow me to move around the house without bumping into something." -- this statement defines the need. We have considerable latitude is responding to this need.

Other customer input: I don't want the light to wake up my spouse, I want something that is easy to use, I want something that is inexpensive and long lasting.

We will need to consider the environment as we try to select a concept for the design.

Concept Selection

(0: Poor, 3: Best)

Wants	Priority	Jar of Fireflies	Flash- light	Candle	Clapper on Room Lamp	Glow Stick
Light	6	0	2	2	3	1
Localized	4	3	3	3	0	3
Easy to Use	3	1	3	0	3	3
Inexpensive	5	3	2	2	2	0
Long Lasting	1	0	2	1	3	1
Environment	2	3	2	1	2	0
Total		36	49	37	44	28

More on Design

- Best concept design appears to be flashlight
- Thoughts heard from one customer:

"I want a cheap flashlight. Batteries are big problem with me. The problem I have with flashlights is that I have a bunch of them all over the house -- all the batteries in my existing flashlights are worn out. I never seem to have time to replace my batteries."

Needs

- Illumination
- Hand held
- Portable
- Minimize battery replacement
- Hazardous Materials

Quantifying the Needs

Need	Priority	Measure	Units	
Illumination	5	Brightness	Candles	
Hand held	3	Volume	cu. cm.	
Portable	3	Mass	gm	
Minimize battery replacement	4	Time	days	
Minimize Hazardous Materials	2	Mass	gm	
Energy Efficiency	3	Cost	\$/yr	

Note that now we are getting more detailed. We need to think about more quantification.

Benchmarking

Need	Priority	Units	Α	В	С	D
Illumination	5	Candles	5	7	3	5
Hand held	3	cu. cm.	25	30	26	20
Portable	3	gm	200	250	190	210
Minimize battery replacement	4	days	60	75	45	
Minimize Hazardous Materials	2	gm	150	190	120	165
Energy Efficiency	3	\$/yr	5	6	10	8

Actual Units to Coded Units

			Actual			Coded			
Need	Units	Α	В	С	D	Α	В	С	D
Illumination	Candles	5	7	3	5	2	3	1	2
Hand held	cu. cm.	25	30	26	20	2	1	2	3
Portable	gm	200	250	190	210	3	1	3	3
Min. battery replacement	days	60	75	45		1	1	0	3
Min. Hazard- ous Matls	gm	150	190	120	165	2	0	3	2
Energy Efficiency	\$/yr	5	6	10	8	3	2	1	1

Benchmarking Results

Need	Priority	Α	В	С	D
Illumination	5	2	3	1	2
Hand held	3	2	1	2	3
Portable	3	3	1	3	3
Min. battery replacement	4	1	1	0	3
Min. Hazardous Matls	2	2	0	3	2
Energy Efficiency	3	3	2	1	1
Total	42	31	29	47	

Product D is the best. Good starting point for our design.

More on QFD

- Customer needs defines engineering features/ characteristics
- The features determine part characteristics
- Part characteristics dictate process features, and so forth

