#### Lecture # 9

Prof. John W. Sutherland

Sept. 16, 2005



#### **Expectation**

True mean:  $\mu_{_{\boldsymbol{Y}}}$  estimated by  $\overline{X}$ 

True variance:  $\sigma_{\chi}^2$  estimated by  $s_{\chi}^2$ 

True standard deviation:  $\sigma_{\chi}$  estimated by  $s_{\chi}$ 

True mean range:  $\mu_R$  estimated by R

$$E[X] = \int_{-\infty}^{\infty} x f(x) dx = mean = \mu_{\chi}$$

Variance = 
$$\sigma_{\chi}^2 = E[(X - \mu_{\chi})^2] = Var(X)$$



### **Expectation (continued)**

$$E[g(X)] = \int_{-\infty}^{\infty} g(x) f(x) dx$$

Rules on Expectation

$$E[cX] =$$

$$E[X+Y] =$$





#### **Process Study**



The following data are collected: 38, 52, 85, 23, 78, 44, 82, 24, 13, 41

n = 10

Average,  $\overline{\mathbf{X}}$  = 48 , Range, R = 85-13 = 72

Sample variance = $s_X^2$ =670.22, Sample std. dev.=  $s_X$  = 25.9



#### Working with a pdf



- What is the equation for the pdf?
- What is the corresponding cdf?
- What is the mean? Expected value for X, E(X)?



#### More on Expectation

 Mean temperature is 50°F with a standard deviation of 9°F. What are the corresponding mean and std. dev. in °C?

E(F) = 
$$\mu$$
 = 50, Var (F) =  $\sigma_F^2$  = 9<sup>2</sup>

$$C = (F-32)*5/9$$

$$E(C) =$$

$$Var(C) =$$



#### **Normal Distribution pdf**





#### **Normal Distribution Example**





#### **Second Example**





#### **Example # 2 Continued**

| # of Std. | Cum. Prob area under            |
|-----------|---------------------------------|
| Devs., z  | curve from $-\infty$ to z, F(z) |

-3 0.00135

2 0.0228

0.1587

0.50

0.8413

0.9772

0.99865

Table A.1

lists F(z) for various std. dev., z

F(-2.5)=0.0062

F(1.5)=0.9332



#### **Example # 2 Summary**



$$P(-2.5 \le Z \le 1.5) = P(Z \le 1.5) - P(Z \le -2.5)$$

$$= 0.9332 - 0.0062 = 0.927$$



#### **Behavior of Sample Means**



#### How are the $\overline{X}$ 's distributed?

- Central tendency
- Spread
- Shape distribution of sample means



### **Distribution of Sample Means**





### **Distribution of Sample Means**

$$\mu_{\overline{\mathbf{X}}} = \mathbf{E}[\overline{\mathbf{X}}]$$

$$\sigma_{\overline{X}}^2 = Var[\overline{X}]$$



#### **Central Limit Theorem**

Averages (in fact, any linear combination of data) tend to be normally distributed regardless of the distribution of X. Tendency towards normality improves as n increases. If X's are normal, averages are also normal.



# Example (2000 throws of a die)





# Example (Throw 2 dice -- find avg )



# Example (Throw 5 dice 2000 times -- find avg )



