Lecture # 37

Prof. John W. Sutherland

Nov. 28, 2005

Linear Regression

Modeling

To describe the data above, propose the model:

$$y = B_0 + B_1 x + \varepsilon$$

Fitted model will then be $\hat{y} = b_0 + b_1 x$

Want to select values for $b_0 \& b_1$ that minimize

$$n = 6$$

$$\sum_{i=1}^{\infty} (y_i - \hat{y}_i)^2$$

Define
$$S(b_0, b_1) = \sum_{i=1}^{n=6} (y_i - \hat{y}_i)^2$$

the model residual Sum of Squares.

Minimize

$$S(b_0, b_1) = \sum_{i=1}^{n=6} (y_i - \hat{y}_i)^2 = \sum_{i=1}^{n=6} (y_i - b_0 - b_1 x_1)^2$$

To find minimum S, take partial derivatives of S with respect to $b_0 \& b_1$, set these equal to zero, and solve for $b_0 \& b_1$

$$\frac{\partial}{\partial b_0} S(b_0, b_1) = 2\Sigma (y_i - b_0 - b_1 x_i)(-1) = 0$$

$$\frac{\partial}{\partial b_1} S(b_0, b_1) = 2\Sigma (y_i - b_0 - b_1 x_i) (-x_i) = 0$$

$$-\Sigma y_i + \Sigma b_0 + \Sigma b_1 x_i = 0$$

$$-\sum x_i y_i + \sum b_0 x_i + \sum b_1 x_i^2 = 0$$

Simplifying, we obtain:

$$nb_0 + b_1 \Sigma x_i = \Sigma y_i$$

$$b_0 \Sigma x_i + b_1 \Sigma x_i^2 = \Sigma x_i y_i$$

These two equations are known as "Normal Equations".

The values of $b_0 \& b_1$ that satisfy the Normal

Equations are the least squares estimates -- they are the values that give a minimum S.

Matrix Form

$$\begin{bmatrix} N & \Sigma x_i \\ \Sigma x_i & \Sigma x_i^2 \end{bmatrix} \begin{bmatrix} b_0 \\ b_1 \end{bmatrix} = \begin{bmatrix} \Sigma & y_i \\ \Sigma & x_i y_i \end{bmatrix}$$

$$\begin{cases} b_0^* \\ b_1^* \end{cases} = \text{Least Squares Estimates}$$

$$= \begin{bmatrix} n & \Sigma x \\ \Sigma x & \Sigma x^2 \end{bmatrix}^{-1} \left\{ \begin{array}{c} \Sigma & y \\ \Sigma & xy \end{array} \right\}$$

Matrix Form (Cont.)

$$\begin{bmatrix} b_0^* \\ b_1^* \end{bmatrix}$$

$$= \frac{1}{n\Sigma x^{2} - (\Sigma x)^{2}} \begin{bmatrix} \Sigma x^{2} - \Sigma x \\ -\Sigma x & n \end{bmatrix} \begin{bmatrix} \Sigma & y \\ \Sigma & xy \end{bmatrix}$$

$$= \frac{1}{n\Sigma x^{2} - (\Sigma x)^{2}} \begin{bmatrix} \Sigma x^{2} \Sigma y - \Sigma x \Sigma xy \\ -\Sigma x \Sigma y + n\Sigma xy \end{bmatrix}$$

Matrix Form (Cont.)

 b_0^* , b_1^* are the values of b_0 & b_1 that minimize S, the Residual Sum of Squares.

$$b_0^* = \hat{B}_0$$
 = an estimate of B_0

$$b_1^* = \hat{B}_1$$
 = an estimate of B_1

Fitted Line

Matrix Approach

$$y$$
: Vector of Observations = $\begin{bmatrix} 2 \\ 3 \\ 5 \\ 7 \\ 6 \end{bmatrix}$,

x: Matrix of Independent Variables, i.e.,

$$\hat{y}$$
 = Vector of Predictions = $\begin{bmatrix} y_1 \\ \hat{y}_2 \\ \vdots \\ \hat{y}_n \end{bmatrix}$ = xb

b coefficients =
$$\begin{bmatrix} b_0 \\ b_1 \end{bmatrix}$$

$$e$$
 = Vector of Prediction Errors =
$$\begin{bmatrix} e_1 \\ e_2 \\ \vdots \\ e_n \end{bmatrix}$$

$$e = y - \hat{y}$$

Want to Min $e^T e$ or Min $(y-xb)^T (y-xb)$

Take derivative with respect to b's and set = 0

$$-\underline{x}^{T}(\underline{y}-\underline{x}\underline{b}) = 0 = -\underline{x}^{T}\underline{y} + (\underline{x}^{T}\underline{x})\underline{b}$$

$$(x^T x) b = x^T y$$

Therefore,
$$b = (x^T x)^{-1} x^T y$$
.

Re-run experiments several times

$${b_0 \brace b_1} = {1.4667 \brace 0.9143}, {b_0 \brace b_1} = {1.5309 \brace 0.9741}, {b_0 \brace b_1} = {1.5512 \brace 1.0134}$$

If true model is $y = B_0 + B_1 x + \varepsilon$

Then
$$E(b_0) = B_0$$
, $E(b_1)=B_1$, $E[\, \underline{b}\,] = \underline{B}$

$$Var(\underline{b}) = (\underline{x}^T \underline{x})^{-1} \sigma_{\underline{y}}^2$$

where, σ_y^2 describes the experimental error variation in the y's (σ_ϵ^2).

For our example,
$$Var(b) = \begin{vmatrix} Var(b_0) & Cov(b_0, b_1) \\ Cov(b_0, b_1) & Var(b_1) \end{vmatrix}$$
.

If σ_{ν}^2 (or σ_{ϵ}^2) is unknown, we can estimate it with

$$s^{2} = \frac{(y-\hat{y})^{T}(y-\hat{y})}{(n-\# \text{ of parameters})} = \frac{e^{T}e}{n-p} = \frac{S_{res}}{v}$$

For the example,

$$s_y^2 = \frac{\sum_{\sum_{i=1}^{N} (y_i - \hat{y}_i)^2} (y_i - \hat{y}_i)^2}{n - 2} = 0.67619$$

$$\widehat{\text{Var}(b)} = (x^T x)^{-1} s_y^2 = \begin{bmatrix} 0.586 & -0.135 \\ -0.135 & 0.039 \end{bmatrix}$$

$$s_{b_0}^2=0.586,$$
 $s_{b_0}=0.767$ standard error of $\mathbf{b_0}$ $s_{b_1}^2=0.039,$ $s_{b_1}=0.197$ standard error of $\mathbf{b_1}$

Dynamic Systems

- Many processes have dynamic characteristics -- data are produced as a result of dynamic behavior within the process
 - Chemical processes
 - Vibrating systems
 - ?

More on Dynamic Systems

 Because of our experience with differential equations and vibrations, we tend to think of dynamic behavior as in the figure below.

Common Cause Variability

 With the addition of process noise, however, we often see behavior like that below.

Time Series Analysis

- For situations like that shown in the previous figure, we can use time series analysis to extract information about the process.
- From a time series model we can "back out" information about the unknown underlying system dynamics.
- Simple autoregressive model [AR(1)]

$$X_i = \phi X_{i-1} + a_i$$

Interpreting Phi

Interpreting Phi

Interpreting Phi

 ϕ = 1.02

Behavior is unstable because ϕ >1

Finding ϕ

Let's say that we have a series of data such as that below

Finding **\phi**

Let's apply this model to data: $X_i = \phi X_{i-1} + a_i$

Same form as $y_i = \beta_1 x_i + \epsilon_i$

We now know how to estimate the value for β_1 (called estimate b_1)

$$S = \sum_{i=1}^{n} (X_i - \hat{X}_i)^2 = \sum_{i=1}^{n} (X_i - \phi X_{i-1})^2$$

$$\frac{dS}{d\phi} = 2\Sigma (X_i - \phi X_{i-1})(-1) = 0$$

Finding ϕ

$$\hat{\phi} = \sum_{i=2}^{n} X_i X_{i-1} / \sum_{i=2}^{n} X_{i-1}^2$$

For data shown previously,

$$\sum_{i=2}^{n} X_i X_{i-1} = 725.71$$

$$\sum_{i=2}^{n} X_{i-1}^{2} = 1562.15$$

$$\hat{\phi} = 0.465$$

So,
$$\hat{X}_i = \hat{\phi} X_{i-1}$$
 -- also can be thought of as a forecast

Backshift Operator

Define backshift operator as

$$X_{t-1} = BX_t$$

In general,

$$X_{t-j} = B^{j} X_{t}$$

Previous equation: $X_i = \phi X_{i-1} + a_i$, can be rewritten as

$$X_i = \phi X_{i-1} + a_i$$
 $X_i = \phi B X_i + a_i$ $X_i (1 - \phi B) = a_i$

 $X_i = a_i/(1 - \phi B)$ -- denominator is characteristic eqn

More on AR(1)

$$X_{i} = \phi X_{i-1} + a_{i}$$
, or since $X_{i-1} = \phi X_{i-2} + a_{i-1}$

$$X_{i} = \phi(\phi X_{i-2} + a_{i-1}) + a_{i} \text{ or } X_{i} = \phi^{2} X_{i-2} + \phi a_{i-1} + a_{i}$$

or

$$X_i = \sum_{j=0}^k \phi^j a_{i-j}$$
 Note similar form to EWMA

AR(2) Model

AR(2) model:

$$X_t = \phi_1 X_{t-1} + \phi_2 X_{t-1} + a_t$$

or

$$X_t - \phi_1 X_{t-1} - \phi_2 X_{t-2} = a_t$$

$$a_t \sim \text{NID}(0, \sigma_a^2)$$