Lecture # 28

Prof. John W. Sutherland

Oct. 31, 2005

Another Example

Three identical parts

Manufacturing process -- $C_p = 1.5$ (at least)

What will the individual process σ_x be, if tolerances are obtained by simple division?

Find (i) standard deviation for the processes

(ii) tolerances for individual parts

Another Example

For now, let's assume hole & pin producing processes are centered at the nominal values and that processes have Cp values of 1.0.

What does clearance dist. look like??

Clearance Distribution

$$C = H - P$$
 $\mu_{C} = \mu_{H} - \mu_{P} = 0.035$
 $\sigma_{C}^{2} = \sigma_{H}^{2} + \sigma_{P}^{2}$ ---- $\sigma_{c} = 0.007$

What can go Wrong?

- We have already seen that if our individual processes (in this case pin and hole) do not remain centered the results can be disastrous.
- What if our processes are not maintained in a state of statistical control?

Histogram - Hole Dimension

Histogram - Pin Dimension

Histogram - Clearance Dimension

Capability Assessment via a Loss Function

Defining the Loss Function

$$L = L_0 + k(x - m)^2$$

- for an x value of 0, the loss, L, is \$0.
 This means that m = 0 and L₀ = 0
- when x= 1.5, the loss, L, is \$2.25 $L/(x-m)^2 = k$ $k = $2.25/(1.5 - 0)^2 = 1$

The \$2.25 loss is obtained from the fact that when x=1.5, the probability of a \$45 complaint is 5%, and \$45 * (0.05) = \$2.25

Loss Function Interpretation of Engineering Specifications

More on Loss / Specifications

So, we want to set our specifications at the point of indifference: where the loss = cost of replacement

If cost of replacement = \$2 for our previous example,

$$L = 1 (x - 0)^2 = 2$$
 ---- $x = \pm 1.414$

More on the Loss Function

Expected Process Loss

$$E[L(X)] = \int L(t)f(t)dt \qquad \text{where,}$$

$$all \ X$$

$$L(x) = k(x-m)^2 \qquad \text{and} \qquad f(t) \text{ is the pdf}$$

after simplification,

$$\mathbf{E}[\mathbf{L}(\mathbf{X})] = \mathbf{k} \left\{ (\mu_{\mathbf{X}} - \mathbf{m})^2 + \sigma_{\mathbf{X}}^2 \right\}$$

Loss Function: Example #1

m=0, k=\$1.0, LSL=-1, USL=1, X normal w/ mean 0 and
$$\sigma_{\rm x}$$
 = 0.33

$$E[L] = 1 [0.33^2 + (0-0)^2] = $0.11$$
 How to interpret??

Loss Function: Example #2

$$\sigma_{\rm X} = 0.58$$

$$E[L] = 1 [0.58^2 + (0-0)^2] = $0.33$$

Filling in a Past Blank

Should know from prior Statistics Class For a Uniform Distribution between a & b

$$f(x) = 1/(b-a)$$

$$\mu_{X} = \int_{a}^{b} x f(x) dx = \int_{a}^{b} \frac{x}{(b-a)} dx = \frac{x^{2}}{2(b-a)} \Big|_{a}^{b} = \frac{(b+a)}{2}$$

$$\sigma_{\mathbf{X}}^{2} = \int_{a}^{b} (\mathbf{x} - \mu_{\mathbf{X}})^{2} f(\mathbf{x}) d\mathbf{x} = \frac{(b-a)^{2}}{12}$$

Loss Function: Example #3

Say we reduce $\sigma_x = 0.33$ to $\sigma_x = 0.10$

$$E[L] = 1 [0.10^2 + (0-0)^2] = $0.01$$

Loss Function: Example #4

Can save \$0.10 by reducing process mean from 0 to -0.7

$$E[L] = 1 [0.10^2 + (-0.7 - 0)^2] = $0.50 WOW!!$$

Taguchi's comment:

