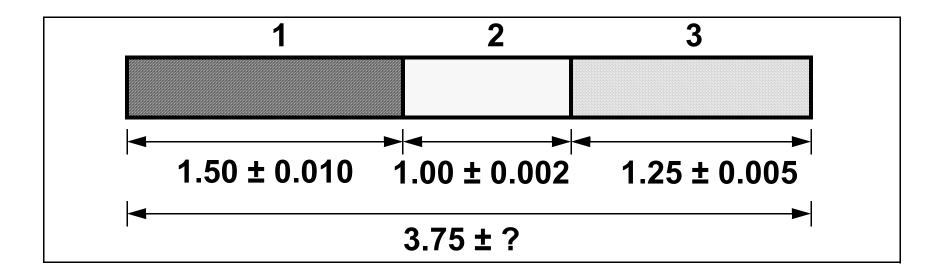
Lecture # 26

Vishesh Kumar

Oct. 26, 2005

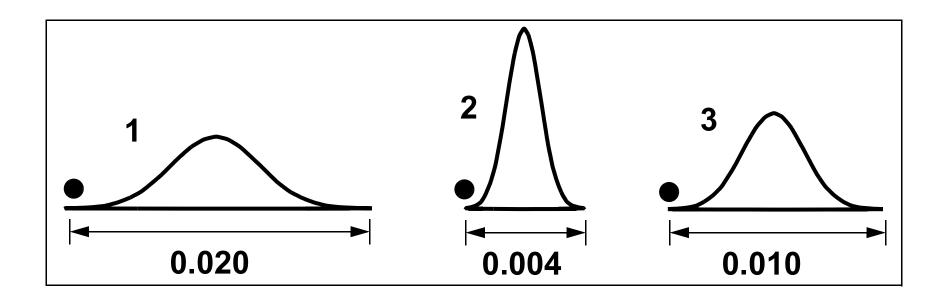
Assembly Tolerances



We might naively set the assembly tolerance by simply adding tolerances: ± 0.017

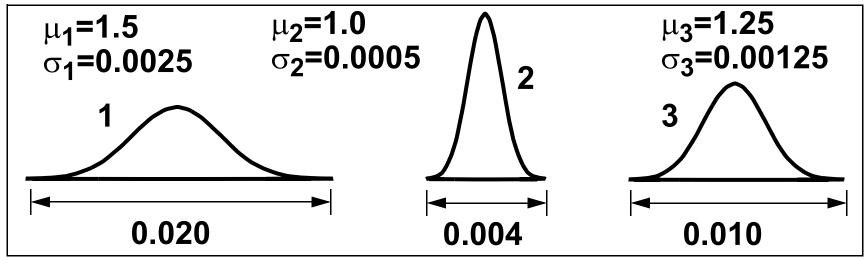
Concerned that parts 1, 2, & 3 might be selected right at the tolerances - want assembly to be ok

Individuals & Assemblies



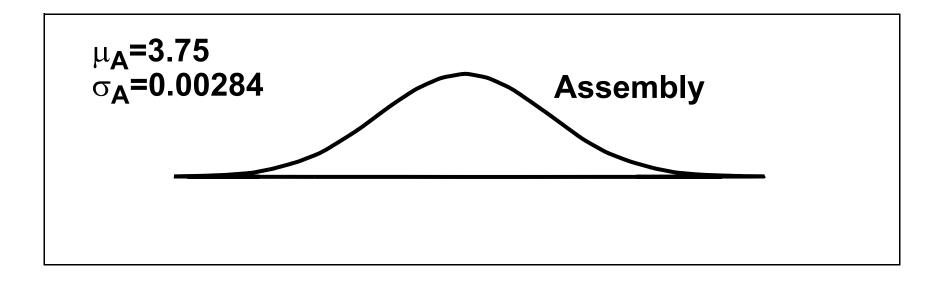
Let's assume specs are $\pm 4\sigma$ from the mean/nominal Probability of a point at or below $-4\sigma = 0.00003$ Probability of simultaneously obtaining 3 such points: $(0.00003)^3 = 2.7$ E-14 (1 in 37 trillion!!)

Describing the Assembly



$$\begin{split} \mathbf{X_A} &= \mathbf{X_1} + \mathbf{X_2} + \mathbf{X_3} \\ \mathbf{\mu_A} &= \mathbf{\mu_1} + \mathbf{\mu_2} + \mathbf{\mu_3} = 3.75 \\ \mathbf{\sigma_A}^2 &= \mathbf{\sigma_1}^2 + \mathbf{\sigma_2}^2 + \mathbf{\sigma_3}^2 = 8.0625 \times 10^{-6} \\ \mathbf{\sigma_A} &= 0.00284 \end{split}$$

Assembly Distribution



If we again assume that the specs are $\pm 4\sigma_A$ from the mean/nominal, then the tolerance is \pm 0.01136

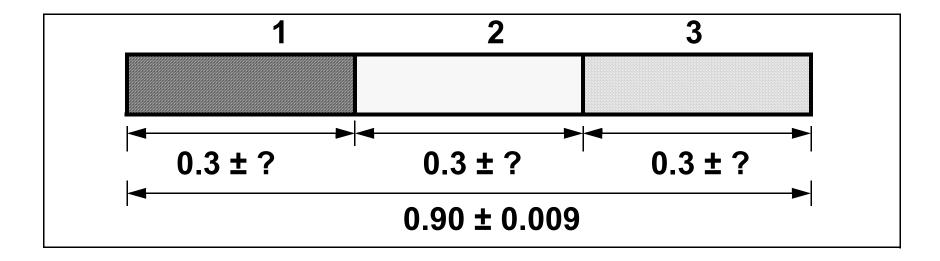
This differs significantly from that obtained by adding!!!

Forces at Work

- Random assembly
- Statistical (so far normal) distribution of part dimensions
- Additive Law of Variances

- In our example we also assumed that the process was centered at the nominal value.
- Tolerances at ±4σ

Assembly Example



How do we obtain the tolerances on the individual parts? Divide 0.009 by 3 = 0.003?

Let's use the relations that we have developed to obtain the unknown tolerance. Assume 1=2=3

Remember that
$$X_A = X_1 + X_2 + X_3$$

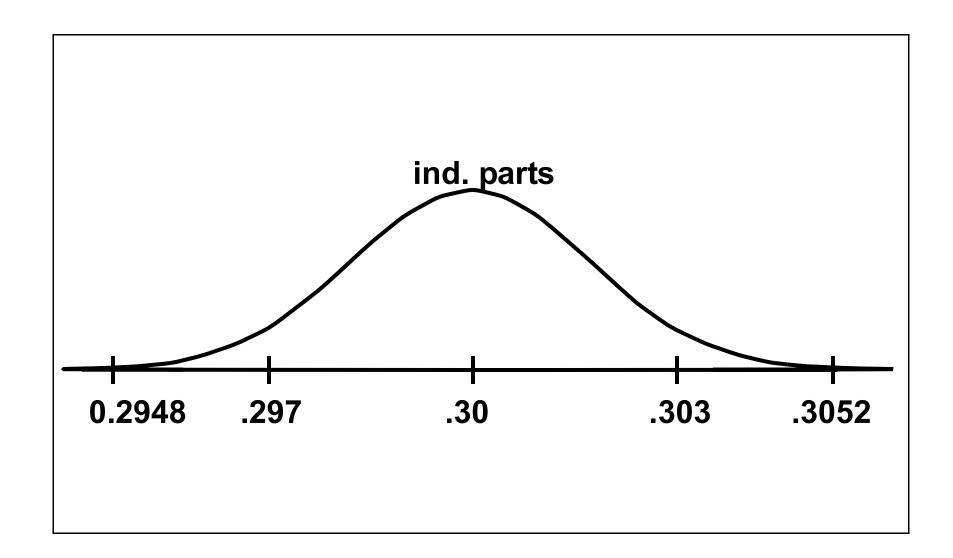
Mean of individual distributions at 0.30

Assembly has tolerance of ± 0.009

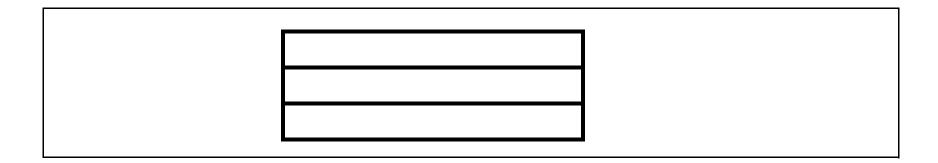
If tolerances are at $\pm 4\sigma_A$, then σ_A = ??

Since
$$\sigma_A = \sqrt{\sigma_1^2 + \sigma_2^2 + \sigma_3^2} = \sqrt{3\sigma_p^2}$$
, $\sigma_p = ??$

If we again put the specs for the individual parts at $\pm 4\sigma_p$, this turns out to be \pm 0.0052



Effect of Process Centering

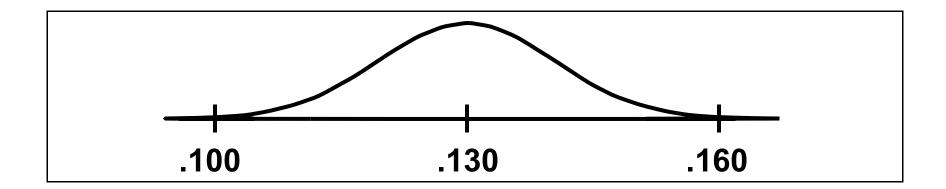


Assembly: 0.390 ± 0.050 inch (0.34 - 0.44) If tolerances are at $\pm 3\sigma_A$, $\sigma_A = 0.017$

Since
$$\sigma_A = \sqrt{\sigma_1^2 + \sigma_2^2 + \sigma_3^2} = \sqrt{3\sigma_p^2}$$
 , $\sigma_p = 0.010$

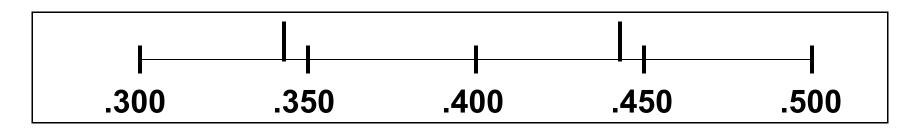
So, for individ. parts: 0.130 ± 0.030 inch

What if we reduce σ_p from 0.010 to 0.005??

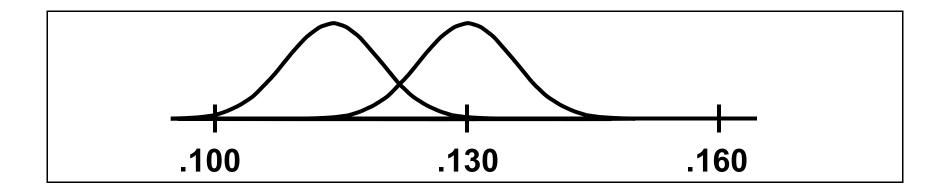


μ**A**=

 $\sigma_{A}=$

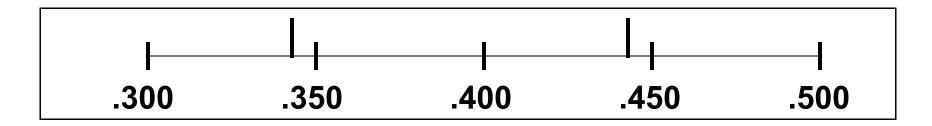


What if we shift process mean to 0.115??

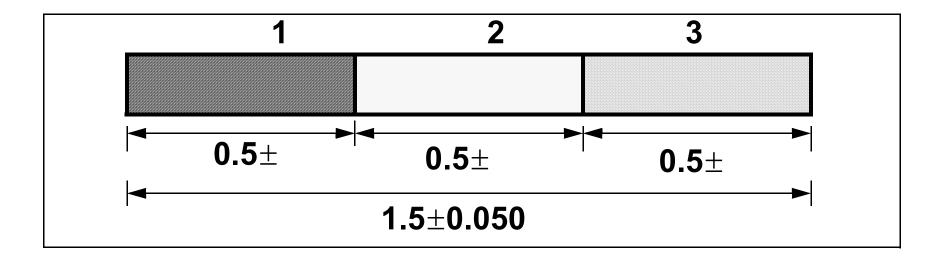


μA=

 σ_{A} =



Another Example



Three identical parts

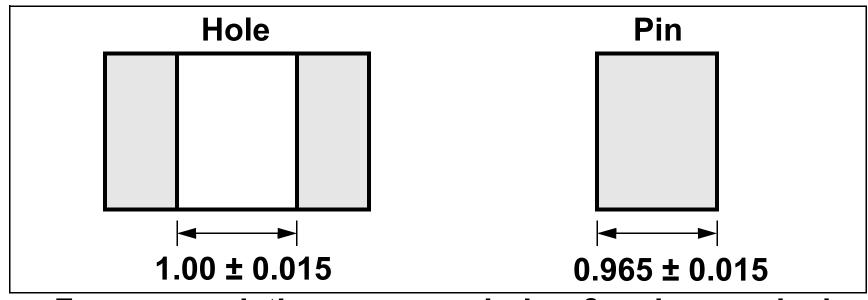
Manufacturing process -- $C_p = 1.5$ (at least)

What will the individual process σ_x be, if tolerances are obtained by simple division?

Find (i) standard deviation for the processes

(ii) tolerances for individual parts

Another Example

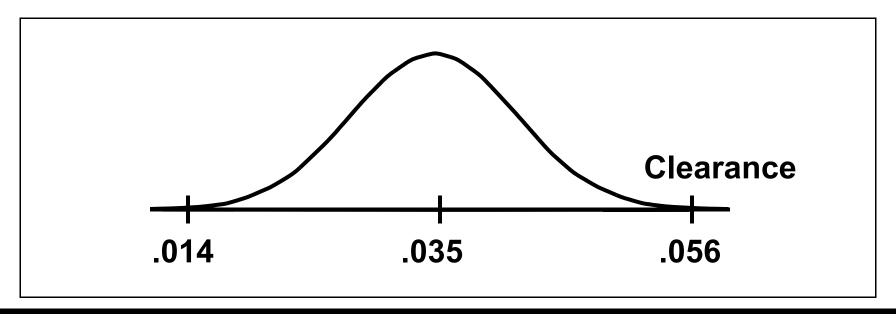


For now, let's assume hole & pin producing processes are centered at the nominal values and that processes have Cp values of 1.0.

What does clearance dist. look like??

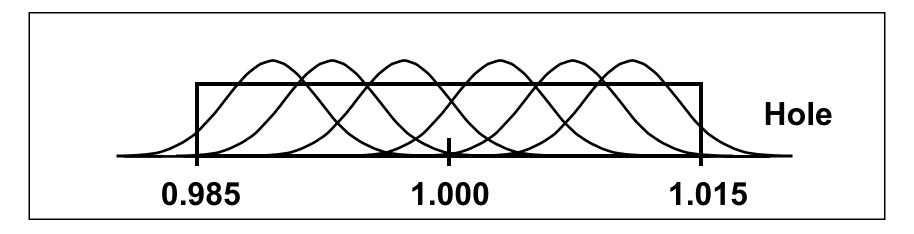
Clearance Distribution

$$C = H - P$$
 $\mu_{C} = \mu_{H} - \mu_{P} = 0.035$
 $\sigma_{C}^{2} = \sigma_{H}^{2} + \sigma_{P}^{2}$ ---- $\sigma_{c} = 0.007$



What can go Wrong?

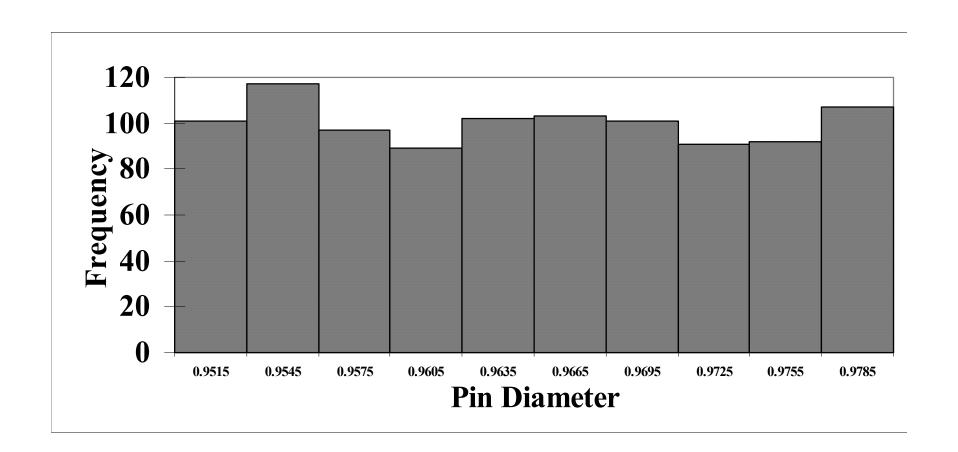
- We have already seen that if our individual processes (in this case pin and hole) do not remain centered the results can be disastrous.
- What if our processes are not maintained in a state of statistical control?



Histogram - Hole Dimension



Histogram - Pin Dimension



Histogram - Clearance Dimension



