Lecture # 24

Prof. John W. Sutherland

Oct. 21, 2005

Process Capability

The extent to which a process produces parts that meet design intent.

Most often, how well the process meets the engineering specifications.

Process capability -- when we quote a number for this we do not want it dependent on time.

Rule: Never assess process capability until the process is "in-control"

Why Process Stability

Let's say process is unstable -- mean changes vs. time

What % of the process output meets the specifications??

Process Variability & Specifications

Process variation is small relative to the width of the engineering specifications

Cylinder Boring - Case Study

Sample	1	2	3	4	5	\overline{X}	R
1	205	202	204	207	205	204.6	5
2	202	196	201	198	202	199.8	6
3	201	202	199	197	196	199.0	6
4	205	203	196	201	197	200.4	9
5	199	196	201	200	195	198.2	6
6	203	198	192	217	196	201.2	25
7	202	202	198	203	202	201.4	5
8	197	196	196	200	204	198.6	8
9	199	200	204	196	202	200.2	8
10	202	196	204	195	197	198.8	9
g = 11g = 0 / 2	205	204	202	208	205	204.6	6
12	200	201	199	200	201	200.2	2
13	205	196	201	197	198	199.4	9
14	202	199	200	198	200	199.8	4
15	200	200	201	205	201	201.4	5
16	201	187	209	202	200	199.8	22
17	202	202	204	198	203	201.8	6
18	201	198	204	201	201	201.0	6
19	207	206	194	197	201	201.0	13
20	200	204	198	199	199	200.0	6
21	203	200	204	199	200	201.2	5
22	196	203	197	201	194	198.2	7
23	197	199	203	200	196	199.0	7
24	201	197	196	199	207	200.0	10
25	204	196	201	199	197	199.4	5
26	206	206	199	200	203	202.8	7
27	204	203	199	199	197	200.4	7
28	199	201	201	194	200	199.0	6
29	201	196	197	204	200	199.6	8
30	203	206	201	196	201	201.4	10
31	203	197	199	197	201	199.4	6
32	197	194	199	200	199	197.8	6
33	200	201	200	197	200	199.6	4
34	199	199	201	201	201	200.2	2
35	200	204	197	197	199	199.4	7

X-double-bar = 199.95 R-bar = 6.61 <u>Process is "in control"</u>

$$\hat{\sigma}_{X} = \overline{R}/d_{2} = 6.61 / 2.326 = 2.8418$$

Histogram shows individuals normally distributed Specifications are 199 +/- 4 : 195 - 203

Capability = 85.86% - 4.07% = 81.8%

Process is not capable (want % > 99.73% as a min.)

Would centering the process at the nominal value help??

Could calculate probability for this case as well.

What action should we take??

Specifications & Control Limits

Specification Limits

- Characteristic of the part in question
- Based on functional considerations
- Compare to individual part measurements
- Establish part's conformability to design intent

Control Limits

- Characteristic of the process in question
- Based on process mean and variability
- Dependent on sample size, n, and α risk
- Establish presence/absence or special causes (local faults) in the process

Specifications on Control Charts

Process Capability Indices

•
$$c_p = \frac{(USL-LSL)}{6\sigma_X}$$

Want ≥ 1

Capability Index C_{pk}

$$z_{\text{USL}} = \frac{(\text{USL} - \mu_{\text{X}})}{\sigma_{\text{X}}}$$

$$Z_{LSL} = \frac{(LSL - \mu_{X})}{\sigma_{X}}$$

$$Z_{min} = min[Z_{USL}, -Z_{LSL}]$$

$$C_{pk} = Z_{min}/3$$

Want \geq 1

Example #1

Mean = 130, Sigma-X = 10, Nominal = 145, Specs: 100-190

Example #2

Shift mean to 145

Example #3

A: Mean = 145, Sigma-X = 15

B: Mean = 130, Sigma-X = 10

Assembly Tolerances

We might naively set the assembly tolerance by simply adding tolerances: ± 0.017

Concerned that parts 1, 2, & 3 might be selected right at the tolerances - want assembly to be ok

Individuals & Assemblies

Let's assume specs are $\pm 4\sigma$ from the mean/nominal Probability of a point at or below $-4\sigma = 0.00003$ Probability of simultaneously obtaining 3 such points: $(0.00003)^3 = 2.7$ E-14 (1 in 37 trillion!!)

Describing the Assembly

$$X_{A} = X_{1} + X_{2} + X_{3}$$

$$\mu_{A} = \mu_{1} + \mu_{2} + \mu_{3} = 3.75$$

$$\sigma_{A}^{2} = \sigma_{1}^{2} + \sigma_{2}^{2} + \sigma_{3}^{2} = 8.0625 \times 10^{-6}$$

$$\sigma_{A} = 0.00284$$

Assembly Distribution

If we again assume that the specs are $\pm 4\sigma_A$ from the mean/nominal, then the tolerance is \pm 0.01136

This differs significantly from that obtained by adding!!!

Forces at Work

- Random assembly
- Statistical (so far normal) distribution of part dimensions
- Additive Law of Variances

- In our example we also assumed that the process was centered at the nominal value.
- Tolerances at ±4σ

Another Assembly Example

How do we obtain the tolerances on the individual parts? Divide 0.009 by 3 = 0.003 ??

Let's use the relations that we have developed to obtain the unknown tolerance. Assume 1=2=3

Remember that
$$X_A = X_1 + X_2 + X_3$$

Mean of individual distributions at 0.30

Assembly has tolerance of ± 0.009

If tolerances are at $\pm 4\sigma_A$, then σ_A = ??

Since
$$\sigma_A = \sqrt{\sigma_1^2 + \sigma_2^2 + \sigma_3^2} = \sqrt{3\sigma_p^2}$$
, $\sigma_p = ??$

If we again put the specs for the individual parts at $\pm 4\sigma_p$, this turns out to be \pm 0.0052

Effect of Process Centering

Assembly: 0.390 ± 0.050 inch (0.34 - 0.44) If tolerances are at $\pm 3\sigma_A$, $\sigma_A = 0.017$

Since
$$\sigma_A = \sqrt{\sigma_1^2 + \sigma_2^2 + \sigma_3^2} = \sqrt{3\sigma_p^2}$$
 , $\sigma_p = 0.010$

So, for individ. parts: 0.130 ± 0.030 inch

What if we reduce σ_p from 0.010 to 0.005??

What if we shift process mean to 0.115??

