Lecture #12

Prof. John W. Sutherland

Sept. 23, 2005

Last Class -- Hypothesis Testing

- 1. State Null and Alternative Hypotheses (H_0 and H_A). Define test statistic.
- 2. Define, α , the risk level.
- 3. Collect Data calculate test statistic.
- 4. Define reference distribution.
- 5. Make statistical decision
- 6. Draw conclusion.

Example #1

MUB claims soup is served at 160 deg. on the average. Soup temps. are know to be normal with a std. dev. of 10.

We want to test this claim!!

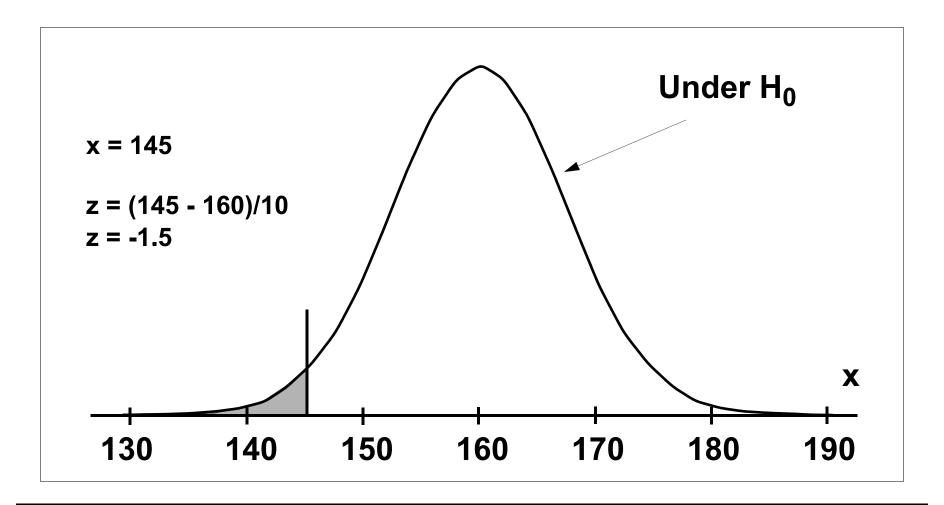
1.
$$H_0$$
: $\mu_x = 160$ H_A : $\mu_x \neq 160$

Select a single bowl at random

2.
$$\alpha = 0.05$$

3.
$$x = 145 \deg$$
.

4. Draw the reference distribution under the null hypothesis.



5.

$$Pr(X \le 145) = Pr(Z \le -1.5) = 0.0668$$

Compare 0.0668 with $\alpha/2 = 0.025$. Since the value obtained is not a rare event. Cannot reject H₀. This means that H₀ could be true.

6. The MUB's claim cannot be refuted. It may be true.

Example #2

MUB claims soup is served at 160 deg. on the average. Soup temps. are known to be normal with a std. dev. of 10. X's follow normal distribution.

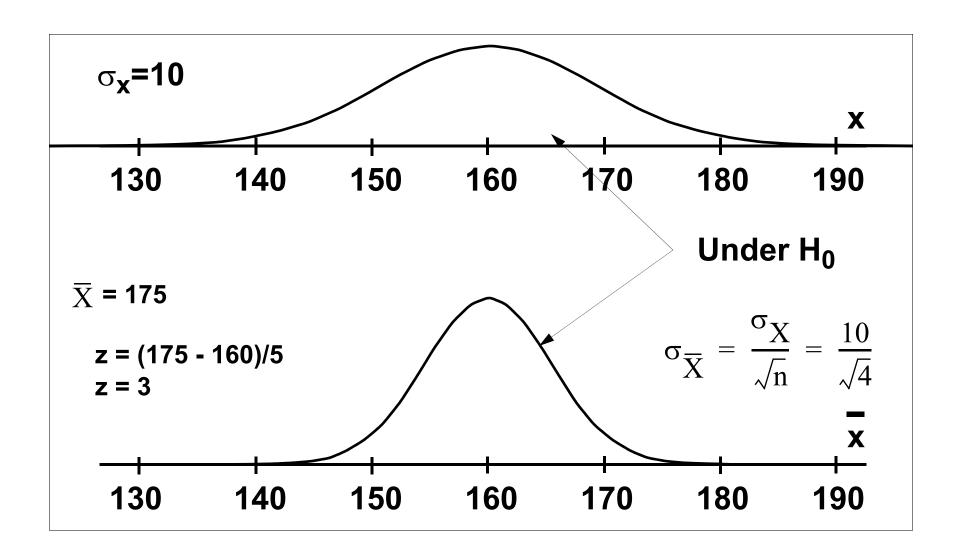
We want to test this claim!!

1.
$$H_0$$
: $\mu_X = 160$ H_A : $\mu_X \neq 160$

Select 4 bowls at random -- to form a sample

2.
$$\alpha = 0.05$$

- 3. Pick 4 bowls (X's) $\overline{X} = 175 \text{ deg.}$
- 4. Draw reference distribution under null hypothesis.



5.

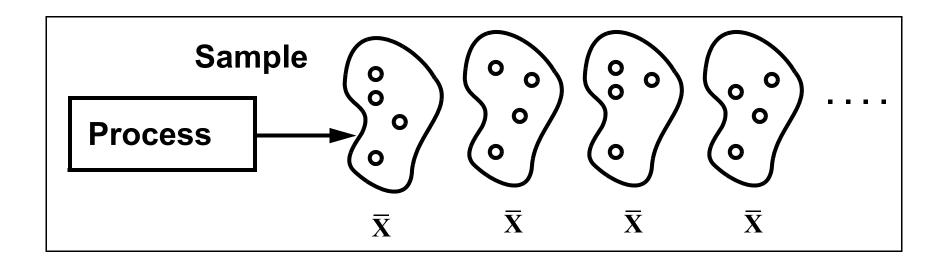
$$Pr(X \ge 175) = Pr(Z \ge 3) = 1 - 0.99865 = 0.00135$$

Compare 0.00135 with $\alpha/2 = 0.025$. Since the value obtained is a rare event. Reject H₀.

6. The MUB's claim appears to be false.

Hypothesis Testing - Example #3

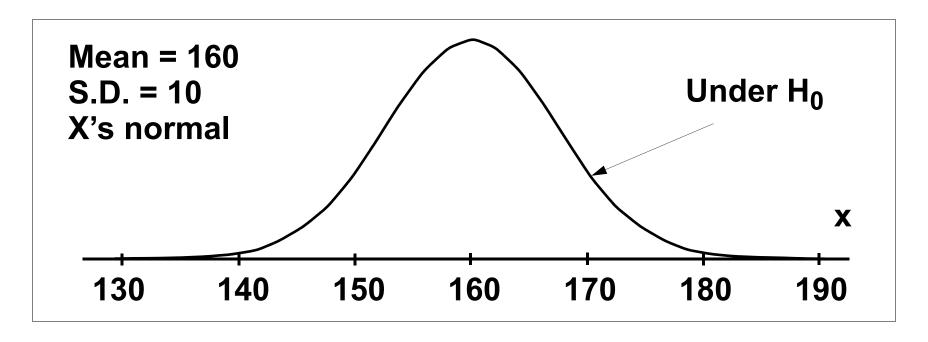
Because of our continuing concern about the temperature of soup at the MUB - let's devise a scheme to continuously monitor it.



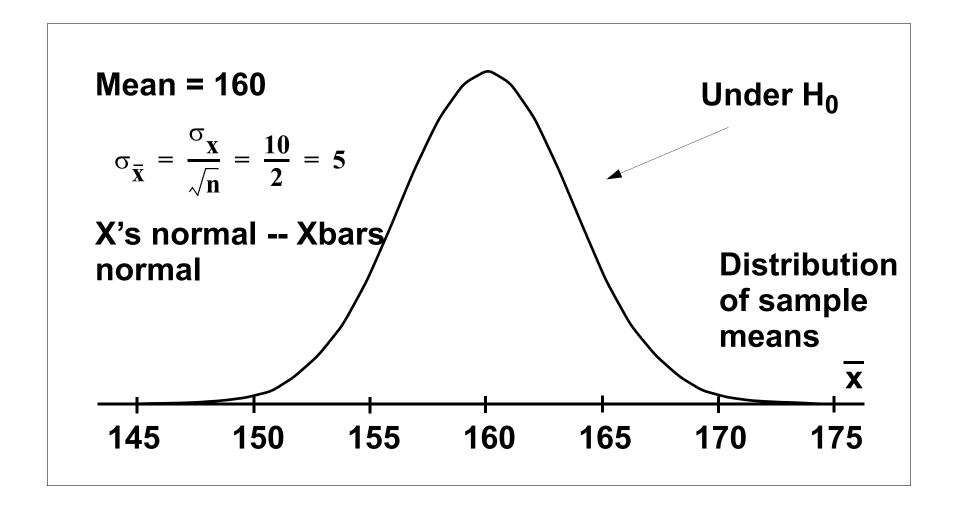
Let's perform a hypothesis test for each $\bar{\mathbf{X}}$

Hypothesis Testing of Multiple Sample Means

Recall that the claimed average soup temperature is 160 deg.



Hypothesis Testing -- Example #3



Example #3

$$H_0: \mu_x = 160$$

$$H_{A}: \mu_{X} \neq 160$$

$$\alpha$$
 = 0.05

So, for every sample mean we obtain from the MUB (say 175), we must:

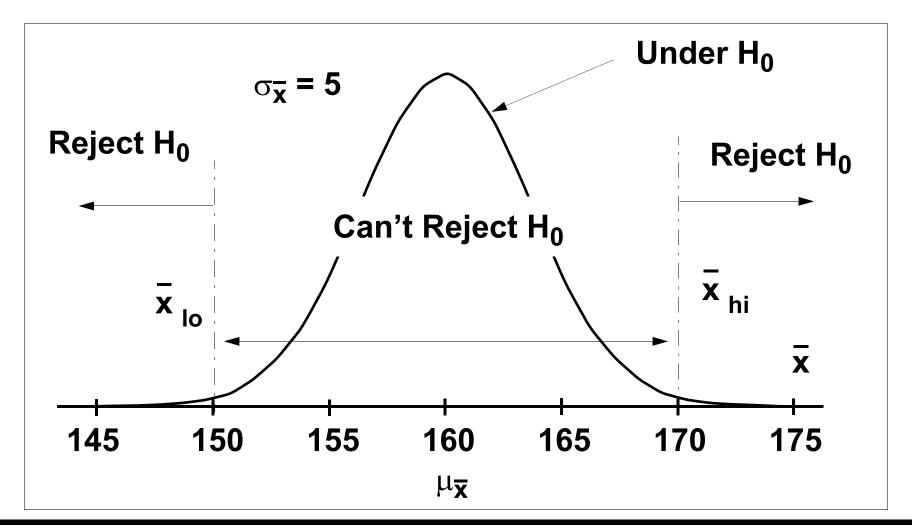
- Calculate Z
- Find probability of getting a value more extreme than that Z
- Compare the calculated probability to $\alpha/2$ reject claim if calc. prob. is less than $\alpha/2$.

Example #3 - comments

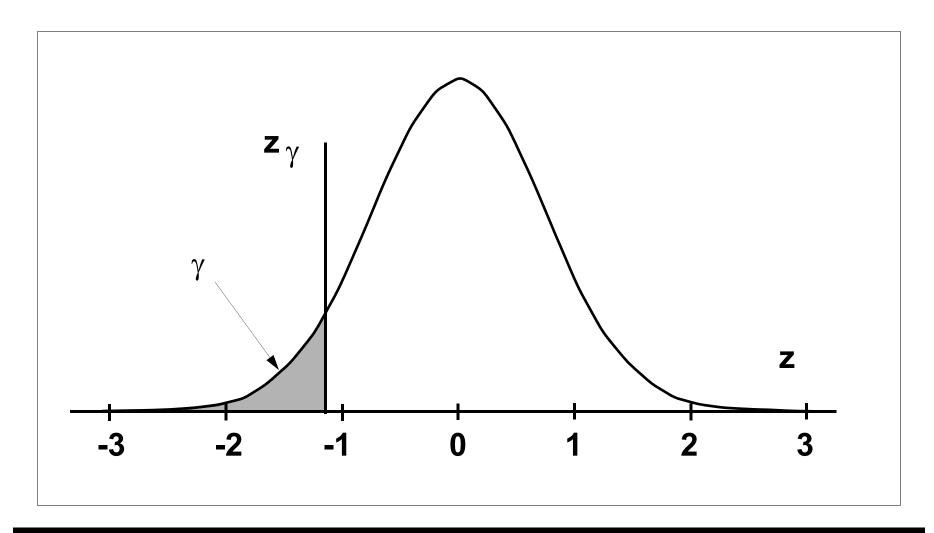
What a hassle! There is no way we wish to calculate a separate Z for each sample mean and then look up the probability for each Z.

Another approach: let's define limits for distribution of sample means - if an Xbar is beyond the limits - reject claim. If an Xbar is within limits, can't reject claim.

Rejection Limits



Notation



Rejection Limits - continued

We want to pick values for $\overline{\mathbf{X}}_{lo}$ and $\overline{\mathbf{x}}_{hi}$.

Any sample mean larger than \overline{x}_{hi} should fail the hypothesis test, i.e., the probability of a value this large or larger is less than $\alpha/2$.

So, let's place \overline{x}_{hi} so that it places α /2 in the tail of the distribution.

$$Pr(\overline{X} \ge \overline{X}_{hi}) = \alpha/2 = 0.025$$

$$\overline{x}_{hi}$$
 corresponds to $z_{0.975}$

Example #3 -- continued

$$\overline{X}_{hi}$$
 corresponds to $Z_{1-\alpha/2} = Z_{0.975} = 1.96$

$$\overline{X}_{lo}$$
 corresponds to $z_{\alpha/2}$ = $z_{0.025}$ = -1.96

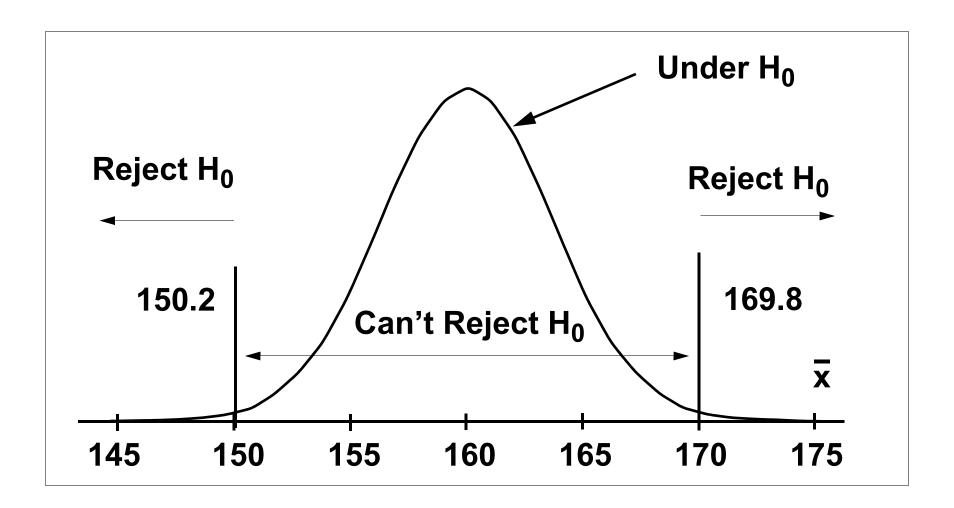
Given the above,

$$\frac{\overline{X}_{hi} - \mu_{\overline{X}}}{\sigma_{\overline{X}}} = Z_{1 - \alpha/2}$$

$$\frac{\overline{X}_{lo} - \mu_{\overline{X}}}{\sigma_{\overline{X}}} = Z_{\alpha/2}$$

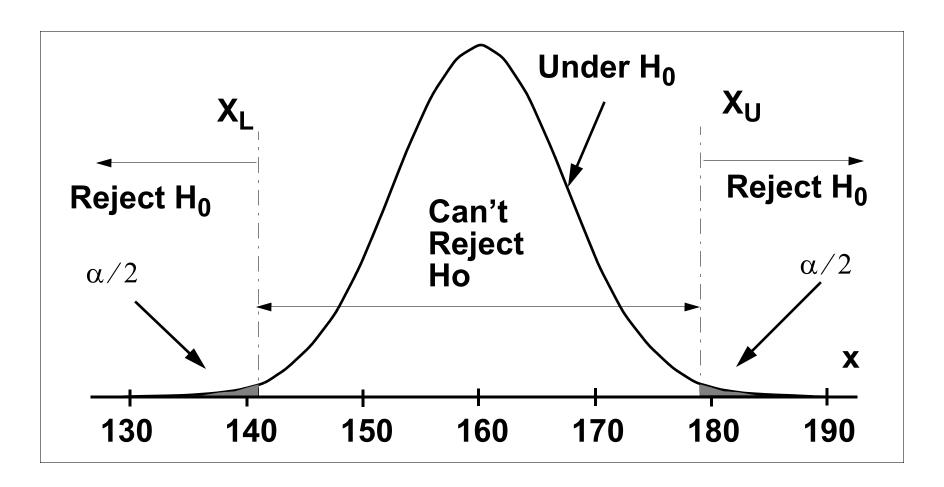
Solving for \overline{X}_{lo} and \overline{X}_{hi} gives 150.2 and 169.8

Rejection Limits



Decision Errors in Hyp. Testing

(Reconsider the Dist. of Individuals - X's)



Hypothesis Testing - Cutoff Values

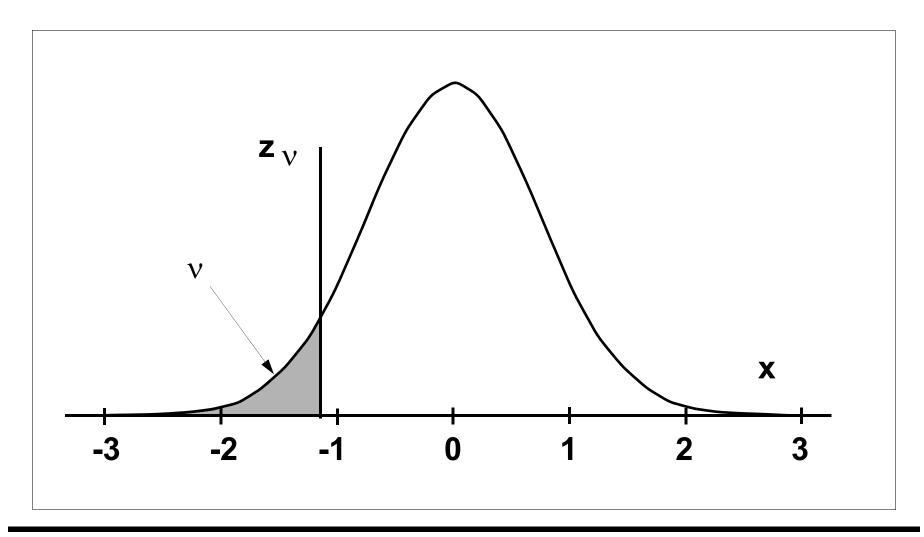
$$Z_{\alpha/2} = Z_{0.025} = -1.96$$

 $Z_{1-\alpha/2} = Z_{0.975} = 1.96$

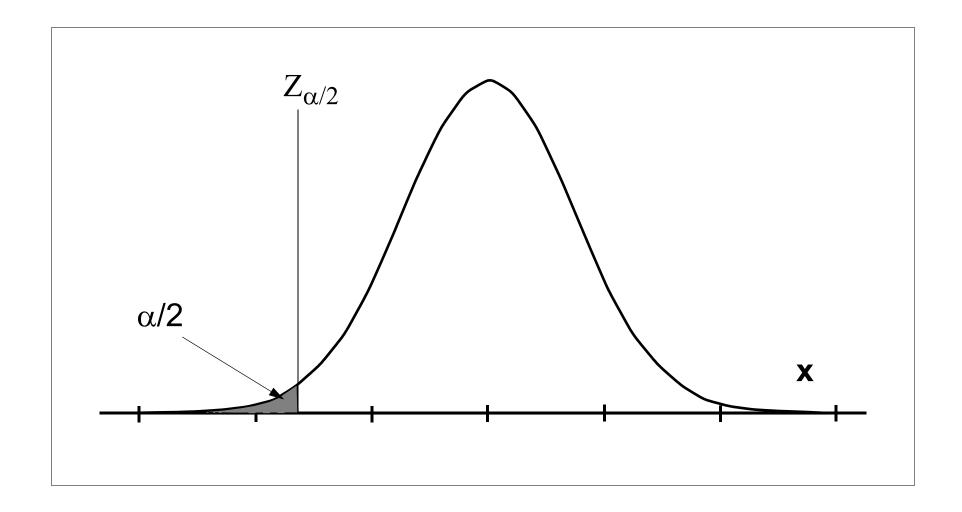
$$\begin{split} & Z_{\alpha/2} = (X_L - \mu_x)/\sigma_x = (X_L - 160)/10 = -1.96 \\ \textbf{-19.6+160=} & X_L \textbf{=140.4} \end{split}$$

$$\begin{split} Z_{1-\alpha/2} &= (X_U - \mu_x)/\sigma_x = (X_U - 160)/10 = 1.96 \\ \textbf{19.6+160=} X_U \textbf{=179.6} \end{split}$$

Notation



Alpha Error



MUB Soup Example

Lets revisit the MUB Soup example we did in the last class and investigate the risk associated in the hypothesis testing

1.
$$H_0$$
: $\mu_x = 160$

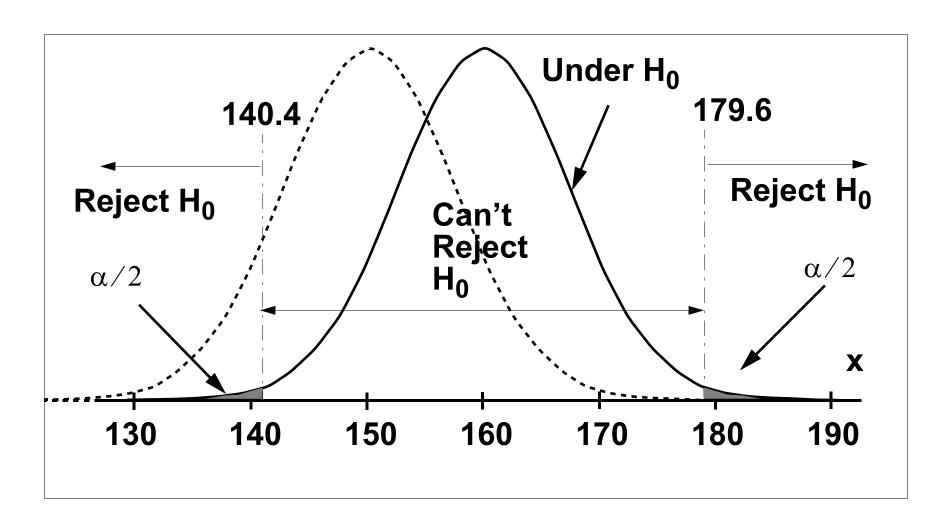
$$H_A: \mu_X \neq 160$$

2.
$$\alpha = 0.05$$

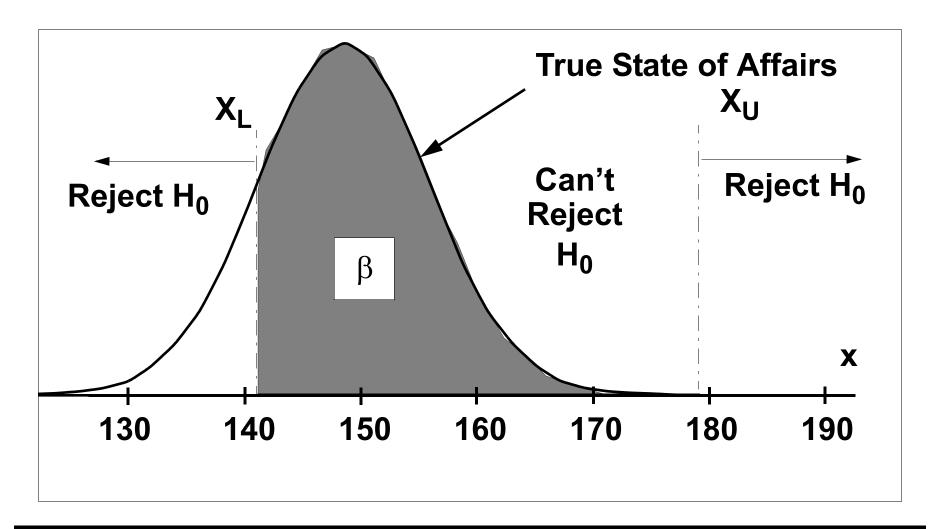
$$X_L = 140.4$$

$$X_{U} = 179.6$$

Example (Cont.)



Beta Error



Risk & Errors - Summary

 α = Producer's Risk

Wrongly Reject Ho: Type 1 Error

β=Consumer's Risk

Don't Reject Ho when we should: Type 2 Error "Wrongly Accepting Ho"

Decision Errors (Summary)

True State

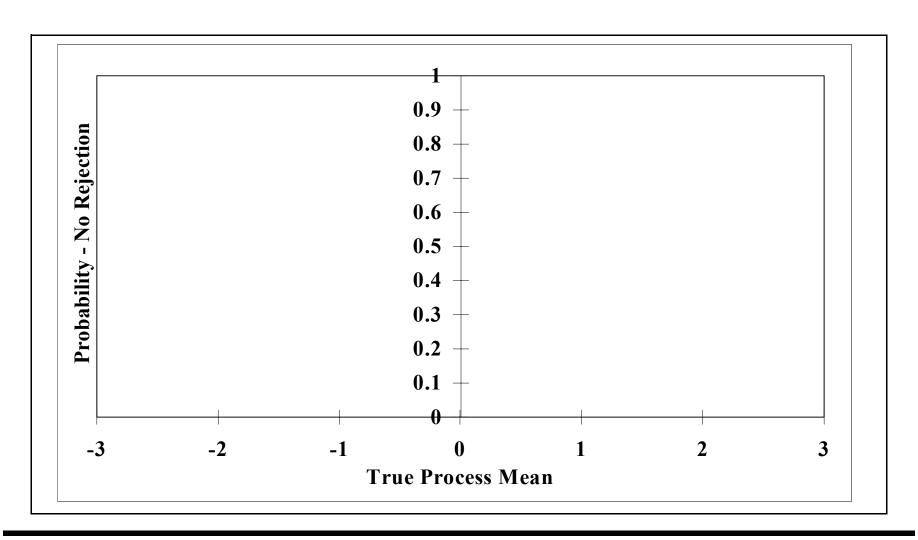
Outcome from Statistical Test of Hypothesis		Claim True	Claim False
	Can't Reject Ho	No Error	β Risk Type 2
	Reject Ho	α Risk Type 1	No Error

Judicial System Analogy

True State

Outcome from Trial Jury's Decision		Innocent	Guilty
	Not Guilty	No Error	β Risk Type 2
	Guilty	α Risk Type 1	No Error

Let's Make a Graph



Example (cont.)

Lets do some calculations

Assume: True Mean: 160 deg.

$$Pr(140.4 \le X \le 179.6) = Pr(-1.96 \le \mathbb{Z} \le 1.96) = 0.95$$

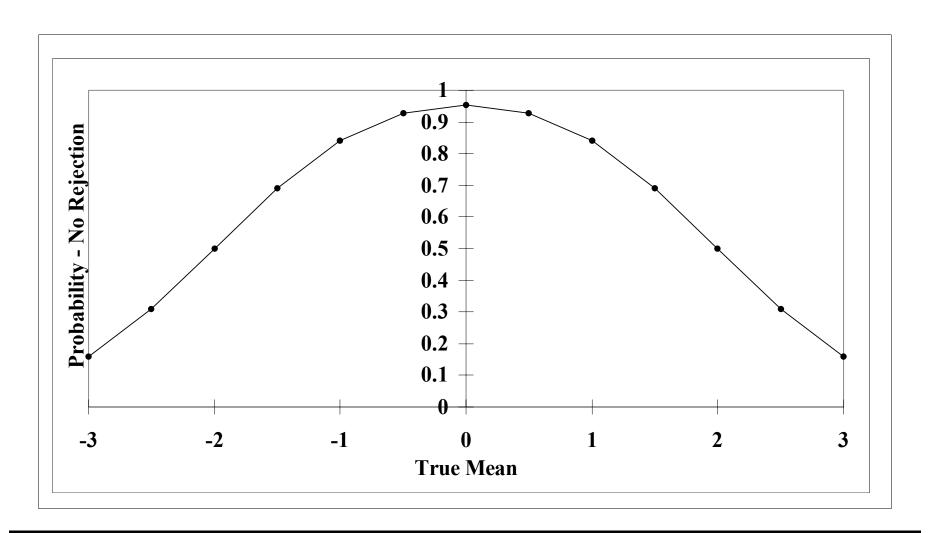
If True Mean is: 150

$$Pr(140.4 \le X \le 179.6) = Pr(-0.96 \le \mathbb{Z} \le 2.96) = 0.83$$

If True Mean is: 140

$$Pr(140.4 \le X \le 179.6) = Pr(0.04 \le Z \le 3.96) = 0.48$$

Completed Graph



Example #2

Blood & Gore are running a Halloween gift store, they claim that the revenue for the store is \$100k per month with a standard deviation of \$20k. An audit committee from IRS(Internal Revenue Services) has come to check their accounting record and see if their claim is right.

Part 1: For the first time, the committee randomly selected four month record and found that the revenue is \$120k. Assuming a risk level of 0.05, evaluate the claim.

Part 2: Calculate the upper and lower limits on X i.e., X_L ,

 X_{U}

Example #3

Part 3: Draw the graph for β risk.

